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Abstract

The behaviour of birational transformations between particular surfaces in p?

and almost-factoriality are investigated. Using a suitable parametrization on

P2 of the quartic surfaces with a tacnodal point, all almost-factorial surfaces of
this kind can be classified. We prove that there are nine classes of such surfaces

F, and for each of them a possible equation is written and its index of almost-
factoriality v is computed. There are surfaces F with v = 4, 8, 12. For each
irreducible algebraic curve C — F, we outline how to construct a surface G

such that F -G = pC, with p < v.
1. Introduction

There are classes of algebraic surfaces F < P? that have the
following property: For every algebraic curve C < F, there is an
algebraic surface S such that F (1S = C, or, more precisely, such that
F - 8 = uC, where p is the multiplicity p = I(C, SN F) of intersection
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between F and S along C. Such a surface F is called a set-theoretic
complete intersection surface; and if F 1is non-singular in codimension 1,

then it is called almost-factorial (factorial if n = 1).

We know that the index of almost-factoriality of F 1is the integer
number v such that, for every reduced and irreducible curve C < F,
there is a surface S with the property that S-F = uC, where p < v. In

this case, we say that F is v-almost-factorial.

It is well known that the multiplicity of intersection p between two
surfaces F and S along a reduced and irreducible curve C can be
computed by considering their affine parts in a suitable affine space A3
in P3, such that C, : CN A? is a curve again. If one of such surfaces
F is normal, the following valuation can be used. Let F, : F =0,
Go,:G=0, and C, be the affine parts of F, G, and C,
with F, G € k[X, Y, Z]. Let k[F,]=k[X,Y, Z]/(F) = k[x, y, z] and
K = k(F,) be the quotient field of k[F], where x, y, z, g denote the
canonical projections of the polynomials X, Y, Z, G on k[F,]. Let p be
the prime ideal of C, in k[F,], and v be the valuation centered at p of

the local ring D.V.R. k[F ;. It will defined pn = v(g).

Many classes of almost-factorial surfaces in P2 are well known. It is
worth recalling them here.

The planes are factorial. Only the quadrics F5 with a unique double
point (cones) are 2-almost-factorial. Among the cubic surfaces F3, there
are only three families of almost-factorial surfaces Fg p3 (see [13]).
Every irreducible quadric cone or cylinder in A? is 2-almost-factorial,
and every quadric paraboloid in A? is factorial. For the affine cubic

surfaces F < A3, there are 82 families of factorial or almost-factorial

surfaces (see [4]).
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For quartic surfaces F, c P3, we know that the “generic’ non-

singular surface is factorial (according to No6ther’s theorem generalized

first by Grobner; Andreotti and Salmon; and later by Deligne, see [8], [1],

[5]), and 33 families of almost-factorial quartic monoids in P2 have been
described (see [11], [12]).

The normal quartic, which is a Zariski’s surface Z,:ZP = G,

(X,Y) c A%, where k is an algebraically closed field of characteristic
p > 0 and G, is a polynomial of degree < 4, was examined particularly
in a book by Lang (see [3]), in which (pages 150-171) the author tackles

the factoriality or almost-factoriality of these surfaces.

Biregular birational transformations between algebraic varieties are
known to preserve their almost-factoriality (see [2]). A criterion has been

given in [6] for the almost-factoriality of V when a birational

transformation of P” is encountered in a projectively normal variety V.

To the best of our knowledge, nobody knows whether any quartic
surfaces in P? with only double points on them are factorial or almost-
factorial.

The aim of this paper was to exhaustively answer the question of

which normal quartic surfaces in P? with a tacnodal point on them are

almost-factorial.

All the almost-factorial quartic surfaces in P® can be placed in 9
classes to within a linear change of coordinates. Using suitable equations

for these surfaces F, we adopt a constructive process to obtain a surface

G such that for every curve C on F, we shall have F NG = C.

To solve the proposed problem, it is essential to analyze the

birational transformations of the surfaces in P3. In the following

paragraphs, k denotes an algebraically closed field of characteristic
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p =0, and A® and P? are the affine and projective spaces on k of
dimension 3. A point (a, b, ¢) € A3 will also be identified with (1: a : b

c) e P2,

2. Almost-Factoriality of Surfaces in P> and

Birational Transformations

Let F=F(T,X,Y,Z) and G = G(T}, X;,Y;, Z;) be irreducible
homogeneous polynomials, and the surfaces F :F =0 c P? and
G:G=0c P13 be non-singular in codimension 1. Then, let be

k[]:] = k[T7 X7 Y7 Z]/J(j:)7 k[g] = k[Tlr Xl? Yl’ Zl]/J(g)

These rings can be regarded as the rings of regular functions of the affine

cones over F and G. They are both integral closed rings because F and

G are non-singular in codim 1. We must remember that a surface
FcP?is normal, if it is non-singular in codim 1 and, as a complete

intersection of P3, it is projectively normal to (see [9], Example 84.5,

page 188).

Every rational transformation between projective surfaces in P? can
be regarded as the restriction of suitable transformations of projective

space.
Let us consider the following rational transformation:  : P3 —— P
v:(Ty : Xy : Y1 :Z)=(Hy: H : Hy : Hg),
given by the four homogeneous polynomials of the same degree
H; ekT,X,Y,Z], i=0,...,3,

whose remainders mod J/(F) does not have a common factor; and the

transformation o : P13 — p3
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c:(T:X:Y:Z)=(Ly:Ly:Ly: Lg),
given by the four homogeneous polynomials of the same degree
L, e KTy, X1, Y1, Z1], i=0,...,3,

whose remainders mod J(G) does not have a common factor. We also

have a birational transformation from F to G, if the following holds:
F(Hy, ..., Hy) € J(F), G(Lg, ..., Ly) € J(G), (@)
and there are two non-vanishing polynomials N € k[T, X, Y, Z] and
N; € K[Ty, Xy, Yy, Z;], for which the following holds:
coT:(Ty : Xy :Y;:2Zy)=(NTy : N\Xy : N1Y; : N;Z;) mod J(G), (2)
and
To6:(T:X:Y:Z)=(NT : NX : NY : NZ) mod J(F). 3)

The relations (1), (2), (3) imply that the restrictions of T on
FN{N # 0} and of o on G {N; = 0} are regular maps, one being the

inverse of the other.
Indeed, if P = (tp : xp : yp : zp) € FN{N = 0} from (2), then we
shall have
P =(N(P)tp : N(P)xp : N(P)yp : N(P)zp) = o(7(P)),
with 7(P) = (Ly(P): Ly (P) : Ly(P) : L3(P)), and with L;(P) = 0, for at
least one 7,7 =0, ..., 3 (otherwise c((0:0:0:0))=(0:0:0:0) is not
the point P). By this and from (1), we obtain T(P) € G.

Below, we call 7 N{N = 0} the set of regularity of T.

In the same way, we can see that, if @ € G {N; # 0}, the point
o(Q) exists and o(Q) € F.
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Proposition 1. Let 1 : F —— G be a birational transformation

between two normal algebraic surfaces in P3, and let G be almost-
factorial. F is almost factorial if and only if every irreducible curve
D c F, whose image is a point on G is a Set-theoretic complete

intersection of F.

Proof. For T we keep the previously notations. The assumption that
dim F = dim G = 2 implies that T gives a birational transformation that
induces a & isomorphism 1" between the rational fields on G and F. We

can apply “Zariski’s main theorem” (see [10], page 49 in the form given by

Bourbaki, Chapter 5, Examples 4-7) to the restriction of the birational

transformation T between the affine varieties X2 = F N {N = 0} and

Y2 = GN{N; # 0} of P? because X2 and Y2 are non-singular in codim 1
(so they are projectively normal). According to this theorem, for said
y = 7(x) to be a point at Y2 for x € X2 can only happen in one of two

situations:

(1) if +1is regular at y, or
(2) if there is a divisor D on F,x € D (called an exceptional

divisor), the projective closure (D) has dimension 0.

An irreducible curve on F (1 {N # 0} can therefore be the pre-image
either of a curve or of a point on G {N; # 0}, so the hypothesis in
Proposition 1 is necessary. Now, we have to demonstrate that it is also
sufficient.

According to the hypothesis in Proposition 1, every irreducible curve
D' on the set of non-regularity for T is a set-theoretic complete

intersection of F with a surface R’ in P®. To show that F is almost-
factorial, we need to verify that every irreducible curve D on

F N{N = 0}, whose image is a curve on G, C = 1(D) is actually a set-

theoretic complete intersection of F.
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Denoting the restrictions of T as 71", 1/, we have the following

situation:
D c F c p3
I I It
C c g c P13

As G is almost-factorial, a surface H : H(Tj, X;,Yy, Z,) =0 in P}
exists such that HN G = C = 1(D). Let us consider the polynomial
H(Hy, Hy, Hy, H3) = L(T, X,Y,Z) and denote the surface
L:LT, X,Y,Z)=0.

We consider the divisor
F-L=vD+vD]+...+v;D;, v>0,v; >0,1<j<t.

None of the components D'j # D,1 < j <t can be transformed in C

because T is invertible on C = (D), so it belongs to F N {N = 0}, and
7(D’;) is a point on G.

Based on the hypothesis in Proposition 1, there are suitable surfaces
R;:Rj(T,X,Y,Z)=0,1<j<t, thatcuton F the divisors

R]]'-ZMJD’], },lj>0, lﬁjﬁt.

v

Let p=memdipy,...,n,} and R = szle”j. If we consider the

surface R : R =0 in P3, we have first
F-R =uwvD] +...+v;Dj),
and afterwards the canonical projections of L and of R in k[F], called [

and r, provide

0
div(ZT ) =un(vD +viD] +...+v,D}) - w(viDj + ...+ v;D}) = wD.
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We can apply the theorem of the integral closed Neetherian’s domain to
k[F], and this enables us to find a polynomial S € k[T, X, Y, Z] such

that it defines the divisor wD on F. The surface S:S =0, thus
intersects F along the curve D with multiplicity uv. D is therefore a
set-theoretic complete intersection of F, and F is therefore almost-

factorial.

Lemma 1. If a pair of skew curves C; and Co exists on a surface
F of P3, then F is not almost-factorial.

Proof. Let C; and Cy be two skew curveson F, C; N Cqy = 0. If F

is almost-factorial, then there are two surfaces H;, Hy < P3 such that
F - H]_ = n1C1, F - H2 = nzcz.

As every curve in P> has a non-empty intersection with every surface,

we have the contradiction
(Z);tClﬂHg ZfﬂHlﬂHg ZClmCQ.

Remark 1. The proof of Proposition 1 enables us to construct a
suitable surface S for which, given an almost-factorial surface F and an

irreducible curve thereon D, it holds that D = F (1 S. In the case of F

being rational, see the example in [6].

Lemma 2. Let F be a normal surface in A3, deg F =n>2 andr be

a straight line on F. For r to be a complete intersection of F with a

surface G,
F-G=upur, p=degFdegg,
it is necessary that the plane tangent to F along r remains fixed.

Proof. This follows from the statement proved in [7].
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3. The Quartic Surfaces in P? with a Tacnodal Point

Below, F will be a normal quartic algebraic surface in P? with a

tacnodal point, that we can assume tobe (0: 0:0:1) = Z_, and we can

take the cone tangent to F at it (such a cone consists of two coincident
planes) to be T = 0 (called the tacnodal tangent plane). F will then be

given by the equation:
ZPT? + 27Ty + 65 = 0, b4 b € HT, X, Y],

where ¢, and ¢y are homogeneous polynomials, ¢, of degree four and

09 of degree two, or ¢ = 0. Let us denote A = (])% — ¢4, then the surface

F can be represented again with an equation in the form
F:(ZT +9)? —A = 0.
We call T' = 0, the plane to infinity of the affine space A% = P? — {T' = 0.

To recognize and classify the kinds of quartic almost-factorial
surfaces with a tacnodal point, we consider the following obvious facts:

The section between F and its tacnodal tangent plane 7 =0, i.e.,
Fo =FN{T = 0}, is splitting into no more than four distinct lines; the
cone A =0 of vertex Z, i1s invariant under linear transformation of
coordinates in A% = P3 — {T' = 0}, leaving the plane 7 =0 and the

point Z_, unchanged.

Lemma 3. Let F : Z2T? + 2ZTby + ¢4 = 0 be a quartic surface in
P3. Then

(1) if two linear polynomials ¢; = aX + bY +cT, ¥; =a' X +0'Y +'T,
exist with ab' —a'b # 0, such that both divide ¢4, then a pair of skew

lines exists on F;
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(2) if a linear polynomial ¢; = aX +bY + T, divides ¢9, and ¢%
divides ¢4, then F is singular along the line {T = ¢; = 0};

3) a surface F : Z2T? 4+ 2ZTdg + ¢4 = 0 has tacnodal points at O
and at Z,, if and only if the polynomials ¢y, ¢4 are in k[X, Y];

(4) if a surface F : A 2ZTd9 + ¢4 = 0 has tacnodal points at O
and at Z, and their tangent tacnodal planes intersect at least in two
distinct points A, and By of F, then F has the skew lines Z A,
OB,;

(5) on the surface F : Z*T? + 2ZT(aX? + 2bXY +cY?)+ X* =0 if
it is ¢ =0, then F is singular along the line {X =T = 0}. Assuming

that c =1, to within a substitution Y = -bX +Y;, we can rewrite the
equation for F in the form Z*T? + 2ZT[(a - b*)X? + Y]+ X* = 0. For
a = b% +1, F is singular along the curves {Y; = 0 = ZT + X?}.

Proof. (1) The lines {Z =0 =aX +bY +cT} and {T =0 =a'X +

b'Y +c'T} exist on F. From ab —a'b=# 0, their intersection is

(T=Z=X=Y=0}=0.

(2) The section of F and the pencil of the planes {¢; — AT = 0} is
given by

Z2T? + 2ZT0TY; + (VT )20 = T2(Z2 + 2Z¢] + 229y) = 0,
with suitable ¢7, ¢4 € k[T, X, Y].

We obtain the line {T' = 0 = ¢;} counted twice for every A € k. F is

then singular along such a line.
() F : Z2T? + 2ZT4o(X, Y) + ¢4(X, Y) = 0 remains invariable under

the symmetry of P2, which changes Z with T. The symmetric of the
tacnodal point Z,, is the point O, which is then a tacnodal point on F,
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and the plane Z =0 is the tacnodal plane tangent to F at O.
Conversely, if O is another tacnodal point of F, we can assume that the
tangent tacnodal plane will be Z = 0. The equation for F will be

unchanged.

4) Z,A, NOB,, = 0.

(5) If ¢ = 0, then X divides aX? + 2bXY and X? divides X*. Then,
from (2), F is singular along {X = T = 0}. We can assume that ¢ = 1.

Substituting Y =-bX +Y; in Z2T2 +2ZT(aX? +2bXY +Y?)+ X% =0,
we obtain Z2T? + 2ZT[(a - b%)X2 + Y2+ X* =0; if a-b% =1,
then F :(ZT +X2)? +2ZTY? =0. At every point on the curves
{Y; =0 = ZT + X2}, the four partial derivatives of (ZT + X2)* + 2ZTY{

become zero. This shows that F is singular along these curves.

Proposition 2. A quartic surface in P,f’ that is non-singular in

codimension 1 with two tacnodal points is not almost-factorial, if the field

k is supposed more than numerable.
Proof. Based on Lemma 3, points (4) and (5), we can assume that
F:Z%T? 1 22T(aX? +Y?)+ X* =0, o® = 1.
Let 6: (T} : Xy : Yy : Z1) = (TX? : X3 : TXY : T?Z) be the composition
of two blow-ups, one centered in the tacnodal point O of F, and one on a

line infinitely near to O. The restriction on F of o has as inverse the

rational transformation
-1, . . . _ 3 . m2 . . v2
(e} (TXYZ)—(T]_ .TlX]_.TlX]_Y]_.X]_Zl).
The proper transform by o of F is the cubic surface

G:Z2T, +2Z1(aTE + Y2)+ TP = 0,
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G is a non-singular cone in codimension 1 (elliptic), if a® #1. So G and

F are birationally equivalent non-rational surfaces. The locus of the

non-regularity of ¢ is given by M = 0, where M = T2X6, because
coo L (T:X:Y:2Z)=(T3X% . 72X" . 72X%Y . 72X52).
The section of F with the set of non-regularity of ¢ is
FN{XT =0}={X=Z=0U{X=T=0}U{X = 2T +2Y% = 0}.

The lines r: {X =Z =0}, s: {X =T = 0} are the complete sections of
F with the tacnodal planes tangent to F at O and at Z,,.

Now, we show that the conic C:{X = ZT +2Y? =0} is a set-

4
theoretic complete intersection of F. F is normal, so div( ;; J on it is

2242 + 2zt(ax? + y?) )

4C + 4r + 4s — 4r — 4s = 4C = div( p”

= div(zt + 2(ax? + y?)).
The surface {ZT + 2(aX? + Y?) = 0} thus intersects F along 4C.

So, from Proposition 1, F 1is almost-factorial if and only if G is

almost-factorial.

We know that G is not almost-factorial (see [13], Proposition 11, page
171, where the field & is supposed more than numerable), so F will not
be either.

Lemma 4. Let F : Z2T? + 2ZTdg + ¢4 = 0, ¢y, 0y € k[T, X, Y], be a
normal quartic almost-factorial surface. Then, the plane tangent to F

along every component line of F,, can only be T = 0.

In addition, only one of the following cases can happen:

(1) F, = 2r + 2s, r, s straight lines, r # s;
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(2) F,, = 4r.
If T'divides ¢9, then only case (2) holds.
Proof. Let rUs c F, with r #s. We can assume, for example,

thatr : T =Y =0,8s:T=X+aY =0, a € k. From Lemma 2, it follows

that the plane tangent to F along r remains fixed; if it were different
from T =0, let us assume, for instance, that o :Y =0. From
I(r, FNa)> 2, there must therefore be suitable homogeneous
polynomials ¢}, d7, d5, ¢5 € k[T, X, Y], such that, ¢o = Y] + T9],
o4 = Y5 + T2¢’2, resulting in
F T Z% + 22¢) + ¢ ) + Y(2ZT¢) + ¢) = 0.
The section between F and a is
F-{Y =0} =2r + C, where C : {Y = Z2 + 2Z¢] + ¢4 = 0.
The two curves s and C on F are skew because their intersection is
SNC={T=X+aY =Y =22 + 224 + ¢4 = 0} = 0.

From Lemma 1, this contradicts the assumption that F is almost-

factorial.

F thus consists of two distinct lines at most. Along these lines, the

(fixed) plane tangent to F i1s T =0. So we can only have the two

situations
Fo =2r +2s, r,s straight lines, r # s, or F,, = 4r.
Now, let us suppose that F_, =2r +2s, r, s distinct lines, and
0y = Th;, with ¢; € k[T, X, Y]. Then F :Z2T? +22T%; + ¢4 = 0.
To within a linear change of coordinates in P3, we can assume that

F, :{X?%Y?2 =0 ="T) and let

by = X2Y2 + T(aX? + bX2Y + cXY2 +dY?) + T?y, vy € k[T, X, Y].
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The equation for the surface F : Z2T2 + 2ZT2¢1 + ¢4 =0, can also

be written in the form

F Y2 +T(aX +bY)][X% + T(cX +dY)]

+T%[Z2% + 2Z¢; — (aX +bY)(cX +dY) +vg] = 0.

This means that the line r : 7' = X = 0 and the quartic Q, which is
the intersection of the quadrics Y2 + T(aX + bY) = 0 and Z2 + 2ZT¢, -
(@X +bY)(cX +dY) + vy = 0, belong to F. Now, the curves r and Q on
F are skew because

rNO={T=X=Y2=2%2=0}=0.

This fact, from Lemma 1, contradicts the hypothesis that F is almost-
factorial. So, if T'divides ¢o, then F,, = 4r.

4. Quartic Surfaces in P? with a Tacnodal Point

and Two Distinct Principal Tangents

As a first step in the investigation into almost-factoriality for the
quartic surfaces in P? with a tacnodal point, we have
Lemma 5. Let F : Z°T? + 2ZTds + ¢4 = 0 be a quartic surface in

P? with F-{T' =0} =F, =2r+2s, v #s. If we assume that surfaces
G:G=0 and H:H=0 exist such that 4deg(G)r =G -F and
4deg(H)s = H - F, then the surfaces G, H must be quadrics ; =0,

Q9 =0 and F can be written as

F:@Qy +T* =0.
Proof. Let us take F, with F, =2r+2s,r #s. To within a

suitable choice of the coordinates in P3, we can assume that

Fpo ={X?Y2 =0} {T =0}, wherer : X =T=0,s:Y =T =0.
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Let G:G =0 and H: H =0 be surfaces of degree n such that
dnr = G- F and 4ns = H-F (we can assume that deg(G) = deg(H),
substituting possible G and H with their suitable powers). In the pencil of
surfaces @ : AGH + uT?" =0, we consider @, : A\GH + poT>" = 0,
which passes through a point Py on F (1 {T' # 0}. The surface ®; cut on

F : F =0 a divisor that is the sum of 4nr + 4ns and of a curve passing

through P,, and its degree is strictly greater than 8n = deg @ deg F.
According to Bézout’s theorem, the surface ®, = 0 is reducible and F is

therefore one of its components. So, a homogeneous polynomial
L € k[T, X, Y] of degree 2n — 4 exists for which

AoGH + poT*" = FL.

But the intersection between 72" =0 and @ : LoGH + poT?" = 0 is

4nr + 4ns, and this coincides with the intersection between T?" = 0 and
F. It follows that {L=T=0}=0, thus L=cek c=#0,
deg(L)=8n-4 =0, then n=2. In the light of all the above,

roGH + M0T4 = cF and we can assume Ay =c, ng = ¢, SO wWe can write
F = @Qy +T*, where

@ =X2+T(Z+aX +bY +cT) =0,
and

Q =Y2+T(Z+aX+bY +cT)=0.

The coefficients of the monomials X2 and Y? can both be assumed to be
1.

Instead of @y =Y2+T(Z+aX+bY +cT)=0, we can take
Qs = Y24+TZ =0 by substituting Z with Z -a'X -b'Y - ¢'T and
(a, b, ¢) with (@ —a', b-b", c-c).
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Proposition 3. The quartics F : Z>T? + 2ZTog + ¢4 =0 in p3
with F -{T =0} = F,, = 2r + 2s, v # s, are almost-factorial if and only if

they can be written in the form
FQ): [X2 +T(Z +aX +bY + T)][Y2 +TZ]+T* =0,
with (4c + b2 —a?)? = 64.
F(1) are 8-almost-factorial.
Proof. From Lemma 5, we can assume that F : @@y + T =0,
where @ = X2+ T(Z+aX +bY +¢T) =0 and Q, = Y2 + TZ = 0.

Each of the straight lines r, s is a complete intersection of F with

multiplicity 8 because
FAQ =0} =8{T =X =0}and F-{Qy =0} =8{T =Y = 0}.
In addition, we obtain a parametrization of F on 2 by means of
t:(T:X:Y:Z)=(WPP, : WPP, : Py : WP?),
with the following polynomials of k[W, U, V] :
P =UW(Q2V - aW - bW),
P, =-UV? - U?W + bUVW + cUW? - W3,
Py = UV2 —U?W = aUVW + cUW? - W3,
Py = UP? - WPZ — PW(aP, + bP, + cP).
On F the transformation
W:U:V)=(T? : (X% +ZT + T(aX + bY +¢T)) : (Y - X)T),

is the inverse of 1. To apply Proposition 1 to F, we must compute the
polynomial defining the set of non-regularity of the parametrization on F.

In the present case, the polynomial is
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M =T"[(a+b)T +2X - 2YP[X% + TZ + T(aX +bY + cT)P,

M =0 intersects F along the two lines r, s, and along the section

between F with the plane
n:(a+b)T +2X -2Y =0.

As a result, the intersection between n and F generically splits into two
conics, C; and Cy, and they coincide if (4c +b? —a?)* = 64. For

2 2 2 2
c=2 ;b 2 and for ¢ = & b

+ 2, indeed we have, respectively,

the surfaces

(a+b

a+b
5 (

5 T+X)?+T%+TZ =0.

T+X)P?-T?>+TZ =0,

On these two surfaces, the plane n: (a +b)T + 2X —2Y = 0 intersects

them along a conic counted twice. We denote with

FQ): [X2 +T(Z +aX +bY +cT)][Y2 +TZ]+T* =0,
with (4c + b - a?)? = 64.

F(1) is almost-factorial and its index of almost-factoriality is v = 8.
Now, we prove that 7 is not almost-factorial if (4c + b% — a?)? # 64.

Let d = b — a. When c satisfies the equation 2cd? + d3b + 8 = 0, the

irreducible conics

2X +2Y - dT =0,
D :
ZT + X? —dXT =0,

are a subset of F. We consider the affine space A% = P3 N {T' = 0} and

we will have F, = FNA? and D, =DNA3 As D(D,) are
irreducible curves, if D is a set-theoretic complete intersection of F,

then D, will be a set-theoretic complete intersection of F, too.
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X Y Z . . . 3
Let x = T y = T z = T be affine coordinates in A°. We have
D, = 2’
z = —x2 + dx.

Now, we consider De Jonquieres’ transformation of A®
DJ :{x =2, g = L
.{xl—x,yl—y+x1—5,zl—z— X, + X1},

DdJ transform F, and D,, respectively, on a surface G, and on the
straight line r : {y; = 2; = 0} on G,. As DJ is an isomorphism of A3,
D, is a complete intersection of F, if r is a complete intersection of G,,.

This fact holds if it is satisfied the necessary condition stated in [7]

(Lemma 2) analyzing how varies the plane tangent to G, at a generic
point (p, 0, 0) e r. This is (d® + ad* —16d + 32p)y; + (d* —16)z; = 0.
As (p, 0, 0) moves along r, the plane remains fixed if and only if

d* =16 = 0, and it is only in this case that the straight line r can be a

complete intersection on the surface G,,.

Now we compute A = (4c+b%-a? )2, substituting b =d + a,

3
c=—M in A. Thus, A:32+¥+d4 and A = 64 if and only if
d

2d>
d* = 16. This leads us to conclude that, if (4c + b? - o2 )2 # 64, then the
curves D on F cannot be a set-theoretic complete intersection of F.

This goes to show that F is almost-factorial if and only if (4c + b? -

a?)? = 64.
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5. Quartic Surfaces in P? with a Tacnodal Point

and Only One Principal Tangent

We can write F : (ZT + ¢5)? — A = 0, where A = ¢3 — ¢,.
Let us consider the birational transformation 7 : P> —— P13
(T Xy Yy Z))=(T? :TX : TY : (TZ + ¢y)), 4)
and we have, for its restriction on F
LT XY Z) = (T2 T Xy TV, - (TyZy — b)),

where ¢5 = do(T1, X1, V7).

The set of non-regularity of 7 is 7' = 0, and 77 = 0 for 71, because

we have
tor L (T :X:Y:Z)=(T*:T3X : T3 : T%2),
and
Ve (T c Xy Yy Zy) = (T T9X,  T9Y, : T3 Zy).
Using T, we obtain
F) : (112 - 62Ty, Xy, YOIE + 02T, X1 Ty, Y17} = AT, X,Ty, YiTh)
= THZPTY - ATy, Xy, Y1) = 0.
The proper transform of F by T is H : ZETE - A(Ty, X1, ;) = 0.

If F is almost-factorial, then the affine part F N{T # 0} of F is

almost-factorial too because the exceptional divisor for T is the line

F N{T = 0}, counted 4 times. So H is almost-factorial if its affine part
HN{T} # 0} is almost-factorial, and H, = H N {I} = 0} is a complete

intersection in P13 .
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To examine H, we have to distinguish between three cases where

A= ¢% — ¢4 isirreducible, or a factor of A is T or not 7.
5.1. The surfaces F with 7, = 4r and A are irreducible

First, we examine a surface of the equation F : Z 272 4 0,(T,X,Y)=0
of the kind M : ZET2 - A(Ty, X1, Y1) = O just found.

Lemma 6. The polynomial ¢4 = - X* +TY? + T(Xpy + T 35) is
irreducible for every homogeneous polynomial vs, %9 € k[T, X, Y].

Proof. A suitable splitting of ¢, in k[T, X, Y] would be one of two
kinds:

by =[ - X% +aX?Y +bXY2 + Y2 + T(-)|(X +dY +eT); a,b,c,d,eck,
by =[ - X2 +aXY +bY2 + T(--)][X? + XY +dY? + T(--)]; a,b,¢c,dek

As in ¢y, X3Y, X2Y2, XY? have zero as a coefficient, and in both the

equalities it must hold that ¢ = b = ¢ = d = 0; but then the monomial

TY? has zero as a coefficient: Contradiction!. This shows that by 1s

irreducible.
Lemma 7. Let F : Z°T? + o4 =0 c P2 bea quartic surface, where
by = TY? + T[Xpo(T, X, Y) + Tyo(T, X, Y)]+ X*.

A suitable plane Z = IT exists that intersects the surface F along an

irreducible curve C : F N {Z = IT}, which proves to be singular in at least

one point Py ¢ {T = 0}.

By means of a suitable choice of coordinates in A3 =P? - {T =0},

we can assume ¢G4 of the form

0y = — (X +aT)P X2 + TY(bX? + cXY + Y2 + dXT + eYT),

with a, b, c, d, e € k.
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Proof. Let us first prove the existence of a section C : {Z —IT = ¢, = 0}

on F that is irreducible and it has a singular point P, on it that does
not belong to the plane T =0. Let F = 2Tt - x* + Tog, where
by = Y2 + Xpo(T, X, Y) + Tyo(T, X, Y); by choosing suitable [ e k, the

homogeneous systemin 7', X, Y

oF _ 23 O3 _
== 4°T% + g + T 2 -0,
oF _ _ax3 O _
= = 4x® 412 _
or _ 993 _ 2 _
5= TSR =TBY+X()+T()] =0,

has at least one solution that gives a point Py = (¢g : xg : yo : ltg), with
to # 0. Indeed, a possible point with ¢y = 0(0 : xg : yg : 0) singular for
C, would satisfy

0=T=X=¢3=2}={0=T=X=Y>=12}.
So xy = ¥9 = 0 and such a point F,; does not exist.

Now C:{Z—IT =1>T* - X* + T$3 = 0} cannot be reducible because

the plane Z =T is transversal to the cone 127T* - X* +[(Y® + Xpo(T, X, Y)
+ Ty9(T, X,Y)] =0, which is irreducible because, from Lemma 6, the
polynomial — X* + TY?3 + T(Xps + T x5 ) is irreducible, with x5 = 3o + I2T2.

To within a change of affine coordinates, we can assume that the
plane Z = IT is Z = 0, that the singular point on C is Py =0 = (1:0
: 0 : 0), and that one of the lines tangent to C through Pyis Z =Y =0

at the point A = (1: —a : 0 :0). These assumptions can be drawn in the

light of the fact that ¢, = — X* + Tés5, and the coefficient of Y3 in 03 1s 1.

In this chosen frame, the curve C is given by
C:{Z=0=—(X+aT)?X% +TY(bX? + cXY + Y2 + dXT + eYT)},

with a, b, ¢, d, e € k.
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Proposition 4. The normal quartic surface of p?
F:Z%T? 1 ¢, =0, ¢4 kT, X, Y], with F,, = 4r,

is almost-factorial if and only if, to within a suitable linear change of

coordinates, it is
F*oZ221? - x* 4+ Y37 = 0.
F"is 12-almost-factorial.

Proof. We can assume that r = Z,Y,, and now ¢, = - X* + T3,
where ¢3 = Y3 + (Xvy + Txy), and vy, xo € k[T, X, Y] are zero or

homogeneous polynomials of degree 2. The coefficient of Y? can be
assumed to be 1 (it cannot vanish otherwise the generic plane X = AT
would intersect F along the lines T = X = 0 counted at least twice, in
which case F would be singular in codimension 1). So, the hypotheses of

Lemmas 6 and 7 hold, for which we can assume that
F o Z2T? (X +aT)?X? + TY(bX? + ¢XY + Y2 + dXT + eYT) = 0.
Now, let us consider the rational transformation ¢ : P® —— PS
o:(Ty: Xy :Yy:Zy)=(T? :TX : TY : (ZT - X(X + aT)),
which has the following inverse transformation on o(F):
L (T XY :2Z)=(TF : ToXy : ToYy : (ZoTy + Xo(Xs + aThy)).
As a result,
o loc:(Ty:Xe:Yy:Zo)=(Ty : Ts Xy : T5Yy : TS Z5)).

From this, the factor of non regularity is 75 = 0, which proves that o is

biregular on the affine part P3 N {7, = 0}. By means of o, the surface

F will be transformed into
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TPToZ3 + 2aXoZoTy + 2X35 75 + bX3Yy + cXoYs + Yy + dXoYoTy + eY3Ty] = 0.

To within the factor T25 , we thus find that the proper transform of F is
the cubic (monoid with a double pointat O; = (1: 0: 0 : 0)).

Fy :Ty(Z3 + 20X Zg +dX oYy +eYE )+ Ys + 2X2 7y + bX5Yy + cX5YE = 0.

ng + 2X§Z2 + bX%Yz + cX2Y22 =0 is an irreducible cubic cone that is

singular along the line {Xy = Yy = 0} and intersects the quadric cone
T: 722 +2aX9Zs + dXsYe + eYs =0,

along the line {Zy =Y, = 0}. As this line is irreducible, it is a set-
theoretic complete intersection of F3. Then we can apply Proposition 1
to the surface F3, which is therefore almost-factorial and it must be one

of the three almost-factorial surfaces (monoids) classified by Stagnaro

(see [13], Theorem on page 143). To within a suitable linear change of

coordinates in P3, these monoids are one of the following kinds:
D To(Y$ + X9Zo)+ X3 =0,
D = Ty(XyYp)-Z3 =0,
(IID) :  To(X2)+ XyZ% + Y5 = 0.
A priori, the following cases may occur:

(1) If T is irreducible (4ea® — d? # 0), then F3 will be the surface
(I) for which the six lines on F3 passing through O; must concide. This
condition is met if the resultant polynomial, with respect to Z, (which is

now Zs, ¢ I') between
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72 + 2aXoZs + dXoYy + eY$ and Yy + 2X2Zy + XoYy(bXy + cYy),
is a sixth power of one linear form in X5, Yy. But such a resultant is
Yo[4(ab — d)X3 + (4ac — b2 — 4e)X5Y,
+2(2a - be)X3YZ — (c? + 2b)X2Y5 — 2¢X,Ys — Yo |,
which would consequently be divisible by Y26 . This implies that
c=b=a=e=d =0,

and this contradicts 4a2e — d% # 0. So F cannot be transformed into the
F g of the kind (I).

(2) The cone T is reducible (ie., d®> = 4ea®) in two distinct or
coincident planes. In the first case, F3 is of the kind (II) and both of the
two component planes of the cone must intersect the monoid along three
coincident lines. The resultant must then be divisible first by Y23, and

then by the third power of a linear form in Xg, Y. This implies that the

resultant is Y26, so b =c¢ =0.T 1is therefore the plane Zg = 0 counted
twice. This means that the surface is of the kind (III), with

a=d=e=0, and the plane Z; = 0 must intersect F3 along a line
counted three times. We have F3 : T2Z§ + Y23 + 2X§Z2 = 0. To within a
change of coordinates in P2, the assigned surfaces
F:Z?T? +¢, =0, ¢4 € k[T, X, Y], with F, = 4r,

are

F*Z2T? - X'+ TY? = 0.
This demonstrates Proposition 4. We note that the point
A=(1:-a:0:0)becomes O, and C has a triple point at O. F* can be

parametrized on the plane p2 by
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(T:X:Y:2)=W3W?-U?? . w2v3(w? -U?): wv*(w? -Uu?): vU).

The inverse correspondence on F* is (W :U :V)=(X?:TZ: XY)

with the factor of non-regularity M = X°Y®7T.

It is easy to see that the surface F* is 12-almost-factorial. The

surface F* was investigated in [6], Example 1, page 290.

Remark 2. In the above-mentioned paper [6], it had been shown how

computing a surface G, whose complete intersection with F is C with
multiplicity p = deg(F)deg(G)/ deg(C) for every irreducible curve C on
F, and some examples were given.

Proposition 5. Let F : zZ%1? 4+ 2ZTby + ¢4 = 0, be a quartic surface
on P? with 7 -{T' =0} = F,, = 4r, and A = ¢3 — ¢, is irreducible. F is
almost-factorial if and only if F can be written in the form

F@): (ZT +aX?Y - X* +Y3T =0, o® =1
F will be 12-almost-factorial.

Proof. We have F - {T = 0} = 4r, so we can write
04 = X+ To3(T, X, Y), ¢3 € k[T, X, Y].

Let ¢ = aX? + bXY +cY2 + T(dX + eY +fT), a,b,c,d, e, f k.

From the birational transformation (4), the proper transform of F by
T is H: ZET? - ATy, X1, Y;) = 0, where A is irreducible. So, we can
apply Proposition 4 to H. In particular, in a suitable coordinates’ frame
of PP, we see that A’ = ¢o(T}, X1, Y, ) — Xit = T5(Ty, X1, Y;) can be
written in the form of — X14 + Y13T1. Now Y14 and X12Y12 do not appear in
A’, so it necessarily is b = ¢ = 0, and therefore, we have ¢g = aX? +

T(dX +eY +fT), d, e, f € k. By replacing the coordinates in P3 with
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T =T, X' =X, Y=Y, Z'=Z+dX+eY+fT,
we obtain surfaces of the kind
(ZT +aX?)P -X*+Y?T" =0, o %1
We can thus conclude that, to within a change of coordinates, when
F-A{T =0} = F, =4r and A = ¢3 — ¢, is irreducible, the only quartic
almost-factorial surfaces in P? are of the kind
F@): (ZT +aX?P? -X*+Y?T =0, o #1.

F(2) are 12-almost-factorial.

5.2. The surfaces F with F_ = 4r, A reducible, T not factor of A

Proposition 6. Let F : Z°T? + 2ZTdg + ¢4 = 0, be a quartic surface
in P> with F-{T =0} =F, =4r and A = ¢3 — ¢, reducible, but T
does not divide A. In a suitable coordinates’ frame, F is almost-factorial
if and only if it is of the kind
FB): (ZT + aX? + Y2 + T(a; X + bY))?

~[(a=1)X2 + Y2 + 2T(dX + eY)][(a + DX% + Y% + 2T(f X+ gY)] = 0,

where a® # 1, (e, g) # (0, 0), with (a+ f21g% )2 =1, and def g # 0.
F(3) is 4-almost-factorial.

Proof. Let ¢y = aX? + 2bXY + cY? + T¢;, and now ¢4 = X* + Tos,
with ¢1, ¢35 € k[T, X, Y] suitable polynomials vanishing or of degrees 1
and 3, respectively. If ¢; = 0 = ¢3, F has two tacnodal points and we
can apply Lemma 3 and Proposition 2 to F. Such a surface is not almost-
factorial. Then we can assume that (¢;, ¢3) does not vanish and, as done

in Lemma 3, (5), we can assume that c¢=1,b =0, a? #1. Let

(I)l = alX + b1Y + ClT. Thus
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AT, X, Y) = 45 — b4 = (aX? + Y2 + T4, ~ X' — T4y,
and, since A is reducible but 7" does not divide A every factor
(aX?2+Y?)P? - X* = [(a-1)X? +Y?][(a + 1)X2% + Y?],

is different from zero. So, it must be that A = ygy9 with non-vanishing
suitable polynomials of k[T, X, Y]. Here we can assume that O; = (1:0
:0:0)e F andat O; satisfies ¢; = pg = 39 = 0 (possibly by substituting
X, Y with suitable X'=X +uT,Y =Y +vT,u,v € k). So, we can

suppose ¢; =0, so ¢; = ;X + b)Y, and
Vo = (@ -1)X2% +Y? + 2T(dX + eY),
2o = (@ +1)X2% + Y2 + 2T(fX + gY).

The equation for F can be written in the form: (ZT + ¢q P = VoY

We can obtain a parametrization of 7 on P? by assuming first

W oy W X’

K:ZT+(|)2 U _Y

and then, from the relation

VE (2T +93) 12
w2 v3 vy

we shall have V2w2 = W2X2. So it must be

2
VZ(a -1)X2 +%X2 +2T%(dX+e%X]

2
_ w2 9o U 2 U U
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Omitting the factor X from the relation above, we shall have

where
N = 2[W2(fW + gU) - V2(dW + eU)], (5)
D =VZ%(a-1W? +U%]- W2[Q + a)W? + U?]. (6)
Finally, from W(ZT + ¢9) = Vi, we first have

(T, X, Y) - Woe(T, X, Y)

zZT W

(7

$o(T, X, Y) and y9(T, X, Y) being homogeneous of degree 2, we shall

have
T2 (2 Dx Dyy_ T2 b wN, UN)
D2 2 T ) T ) T - D2 2 ) ) )
T2 (Rp Dy Dyy T2 b wN. UN)
D2 2 T ) T ) T - D2 2 ) ) .
Finally,
Z P
T wp?’
where we have put
P = Vyo(D, WN, UN) — Woo(D, WN, UN) € k[U, V, W], 8)

a polynomial of degree 9. Only if it is supposed N = 0, i.e., (d, e, f, g) #

(0, 0, 0, 0), we obtain a parametrization for the surface F given by

X _W*ND
T wp?’
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and this is a restriction to F of the rational map o : P2 —p3
(T:X:Y:Z)=(WD?: W2ND : WUND : P).
The rational transformation P? —— P2
W:U:V)=(Xyg : Yoy : X(ZT + ¢9)),

induces one birational transformation inverse of ¢ on F. When we

substitute, mod F, respectively,
W, U,V with Xvg, Yoo, X(ZT + ¢3),
we have, of course W = Xyy, U = Yy, and from (5) and (6),
D =TX?*3R, N = TX?y3R, )
where R = 2(dX +eY)[(a + 1)X2 + Y2]-2(/X + gY)[(a -1)X2 + Y?].

From (7), (8), and (9) results

P = Vyo(D, WN, UN) - Woo(D, WN, UN)
= Voo (TX?p3R, X3¥3R, YX203R) — Wuo(TX W3R, X2v3R, YX%¥3R)
= XYWER2[ Vo (T, X, Y) - Woo(T, X, Y)] = X*WSR2ZTW = ZTX I R2.
Therefore, we have for T, X, Y, Z, respectively,
T(TX%»3R?), X(TX°yIR?), Y(TX°»IR%), Z(TX°yiR?).
Thus, the factor of non-regularity of o, mod F, is
M = TX5pIR?,

where R = 2(dX +eY)[(a + )X2 +Y2]-2(fX + gY)[(a -1)X? + Y?].
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We note that R splits into three linear forms in X, Y, and R is just the
resultant of p9 and y9 with respect to 7.
Now the surface M = 0 cuts the following curves on F :

- the section of F with the quadric y9 = 0; this is the irreducible
quartic C4 :¥9g = ZT + ¢p9 = 0 (counted twice), if yy is irreducible;
otherwise, if y9 is reducible, we obtain two conics (counted twice), each of
which is the intersection of Z7T + ¢9 = 0 with a plane component of
¥g = 0;

-T =0 givestheline r : X =7 =0 on F counted 4 times;

- the section between F and X = 0 splits into the line r and the

irreducible (rational) plane cubic
Cy:{X =0=2Z2T+2ZY(Y +bT)+2Y3 (b, — e — g) + Y2T(b? - 4eg)).

Now r is a set-theoretic complete intersection of 7 with 7' = 0 and

also C3 because on F, we have

le]:( - x4 /t) = 4C3 +4r — 4r = 4C3
If we set G =Z°T +2Zpy+¢3 is dive(g)=4C5 and therefore
G : {G = 0} intersects F along 4Cj.

- R = 0 gives three planes passing through the line X =Y = 0, each
of them, different from X =0, Y = tX intersects F along a reducible

quartic if and only if, for Y = tX A becomes a square A = Aoy = A2X4,
with A € k. We are interested in the planes Y =tX over which it

results R = 0 and so
A?X4

=4(d - et)(f - g)X°T? + 4(f - gt)(a -1 + t2)X3T + [(a + 2 ) —1]X*.
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g2

plane fX + gY = 0 intersects F according the two different conics

2 —
When tzg and A2 :(a+f—)2—1¢O,R = 0 implies éz%. The

{fX+gY=O=ZT+(a1—blé)XT+(iA+a+%)X2}.
g

Arguing similarly the final part of proof of Proposition 3, one shows

that these conics can not be complete intersection on F.

d

2 2
WhentzézgandA2 :(a+f—)2—1:0, i.e.,a:il—f— we

g* g*

find the two double conics

2{([52 =0= ZT+¢2}, and 2{X2 =0= ZT+¢2}

The plane dX +eY = 0, if fe # gd, intersects F according complete

. . . d? . . .
intersections: A double conicif a =1 - —5 > oran irreducible quartic.
e

The same is for the plane fX + gY = 0, if fe # gd. It intersects F

2
according a double conicif a = -1 - f—z, or an irreducible quartic.
g

2
From Proposition 1, F is almost-factorial if and only if (a + f_2 P =1,
g

with def g # 0. F results 4-almost-factorial.

Let us denote the said almost-factorial surface with
FB): (ZT + aX? + Y2 + T(ay X + byY))*
~[(@a-1)X% +Y? +2T(dX +eY)][(a + VX% + Y2 + 2T(fX + gY)] = 0,

2
with (a +f—2)2 =1, defg # 0.
g
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5.3. Quartic surfaces F with 7 = 4r and with T dividing A
We can write A =Ty3(T, X,Y), and not A = T2w2(T, X,Y),
because the surface
(ZT + 93)* - T%09(T, X, Y) = 0,
would be singular along {T' = ¢9 = 0}.

In the case under investigation, we obtain, by 7 in (4), from the

surface F : (ZT + ¢ )2 — Tys = 0 the cubic surface (double plane)
H: ZET - ps(Ty, X1, Y;) = 0.

If 7 is assumed to be almost-factorial, so is F N {T = 0}, and the
affine part H, = HN{I} # 0} must therefore be almost-factorial.

Conversely, if H, is almost-factorial, so is F N{T # 0} because the

transformation T is biregular on P3 N {T' = 0}, and being F,, = 4r, F

is also almost-factorial.

We examine all the possibilities in the following proposition:

Proposition 7. Let F : Z*T? + 2ZTdg + ¢4 = 0, be a normal surface
in P2, with F,, =4r. If T divides AT, X,Y) = ¢3 — by, F is almost-
factorial if and only if, to within a linear change of affine coordinates in

P2 — {T = 0}, F is one of the following:

F@) : [ZT +(@X +bY)P?P -TXY(X +Y)=0, O=a=b=0;
FG) ¢ [ZT +(@X +bYPP -TXY(X+T)=0, a=0,b=0;
F6) : [ZT+@X +bY?P -TX(XY +T%)=0, a=0,b%0;

F) : [ZT +(@X +bY)? P -TX(TY + X?) =0, b= 0;
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FGB) : [ZT +@X +bY)?P -T(T?Y + X?) =0, b= 0;

FO) : [ZT +@X +bY P -T(TY? + X?)=0, b=0.
The surface F(9) is 12-almost-factorial; all the others are 4-almost-

factorial.

Proof. As T is a factor of A (reducible), in every case it must hold
that

Foo i {T = 64 = 0} = {T = ¢3 — A = 0} = 2{T = ¢, = 0} = 4,
with r a suitable line, that we can assume r : {T' = aX + bY = 0}, with
a, b satisfying the condition to avoid F is singular along r. So we have

by = (aX +bY)? + Th;, A = Tys,

A being reducible we have to examine the case in which the almost-

factorial surface F will be transformed into the double plane
H : Z2T —vy(Ty, X1, Y;) = 0.

The exceptional divisor of 7 is {7} = v3(7}, X3, Y1) = 0}. This divisor
splits into straight lines passing through Z, and its affine part
Hy, = HN{T} # 0} must be almost-factorial. The affine cubic surface
H, is then among those listed in [4]. We are interested only in those that

have the projective closure with ., splitting into lines passing through
Zy:

(1) they are three distinct lines;

(2) two of the three lines coincide; or

(3) all three lines coincide.

The double cubic planes with the above said property are the
following:
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For case 1 in the list linked to [4], we have only the surface n.14, and
by changing (Xy,Y;, Z;) with (-Xq, -Yy, Z;) is Hy : ZET) - X1V,
(X7 +Y7) = 0; this corresponds to the quartic surface

FA): [ZT + (aX +bY P -TXY(X +Y)=0, O#a#b=0.

For case 2, there are two surfaces in the list

-n.45, assuming ¢ = —1 and exchanging (X, Y, Z) with (X, Z;, - Y;),
we have My : Z2T, - X;Y;(X; +T;) = 0, and

- n.64, exchanging (X;,Y;, Z;) with (-X;, Z;,-Y;), we have
Hg : Z2T) — X1(X,Y; + T2) = 0. The corresponding surfaces are

FG): [ZT + (aX +bY? P —-TXY(X +T) =0, a#0,b=0,

F6):[ZT + (aX + bY)?* P - TX(XY +T?)=0, a#0,b#0.

Finally, for case 3, we have the surfaces H in P13 that are almost-
factorial because H - {T} = 0} is irreducible. We thus find the surfaces
n.72, n.76, and n.78. For the surface n.72, exchanging the coordinates
(X;,Yy, Z)) with (-X;, Z;, Y;), we obtain Hy :Z12T1 -X,(y; +Xi2 )=0,

corresponding to the quartic
F(7): [ZT + (aX +bY)? P - TX(YT + X?)=0, b =0.
For n.78, exchanging (X7, Y7, Z;) with (-X;, Z;, - Y;), we obtain
Hg : Z2T) — (T2Y; + X3) = 0, corresponding to
FB): [ZT + (aX +bY)* P -T(YT? + X3)=0, b=0.
For n.76, exchanging (X3, Y;, Z;) with (Z; - Yy, - X1, Z; +Y;), we have

Hg : Z2T, — (T)YE + X) = 0, which gives to the quartic
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F9): [ZT + (aX + bY? P -T(Y?T + X3) =0, b =0.

Now we need to examine each surface F(i), 4 <i <9, to obtain its

suitable parametrization on P? and the factor of non-regularity M. On

each surface F;, 4 <i <8 every factor of M defines a plane that

intersects F; according to either a conic {Z7T + (aX + bY)? = 0} counted
twice or the line {aX +bY =0} with multiplicity 4. According to

Proposition 1, all such surfaces are 4-almost-factorial.

For the last surface F(9), the factor of non-regularity is T°X5. We

have
FO)-{T =0} = 4r, F(9)-{X =0} = C; + Cq,
where Cy 1 {X =0=ZT +b2Y%2 —YT},Cy : {X =0 = ZT + b%Y? + YT.
Now it is
) ZT + (aX +bY)? = YT
FO)YN{ZT + (aX +bY)? - YT = 0} =
TX3 =0
={T=0=(aX+bY)?}+{X?=0={ZT +(aX +bY)?> - YT =0} = 2r + 3C;.

On F(9), we consider the divisor of

(2t + (ax + by)2 - yt)2 _ (et +(ax + by)2 )2 - 2ty(zt + (ax + by)2 )+ t2y2
t t

= x% —2y(zt + (ax + by)?) + 2ty>.
The cubic surface S : X® — 2Y(ZT + (aX + bY)?) + 2TY? = 0 gives
F(9)- S = 4r + 6Cy — 4r = 6C;.

Then we consider F(9)N{ZT + (aX +bY)? + YT = 0}. With a similar

calculation, we find
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F(9)-{X> +2Y(ZT + (aX +bY)? )+ 2TY? = 0} = 6Cy.

From Proposition 1, the surface F(9) is almost-factorial, and precisely is

v =12.

All these results are summarized in the following tables; v = index of

almost-factoriality, M = factor of non-regularity for the parametrization

of the surface.

Almost-factorial quartic with 7, = 4r and T dividing A

Equation of the

surface

Parametrization T

-1
T

F(4):
[TZ + (aX + bY )2 PP
~TXY(X+Y)=0

Oxa#b=0

cW2URW + UY
: WUV2(W + U)
: W2UV2(W + U)

SWUVZ(W +U)-V4alU + bW}

W:.TY

U:.TX
Vi ZT + (aX + bY)?

M=T?X?Y?(X +Y)?

. U2W2(W*U)2 W T(T+X)
F(B): U:TX
© cW2UR(W - U)
[TZ + (aX + bY 2P WOVEW - U Vi ZT + (aX + bY)?
~TXY(X +T)=0 - M =T"X%(X + T)
WAURV(W -U)
a#0,bz0
—[aWU? + bVEW - U)?
- w2ut w:T?
F(6): WUP U:TX

[TZ + (aX + bY 2 P

~TX(XY +T?)=0

a+z0,b%0

: W2UR(VZ - WU)

SWVU? - [aUB + bW(VZ - WU)P

V:ZT + (aX + bY)?

M=T"x*
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. we W:TX
F(7): WU - W) U:TZ + (aX +bY)?
212 .
[TZ + (GX + bY) ] : WSV(U2 B WV) V.TY 4
_ 2y _ M = T7°Xx5
TX(TY+X ) 0 . W3U(U2—WV)—
b+#0
—(U% =WV )?)(aW + bV
W W T?
F(8): WU U:TX
[TZ + (aX + bY 2 |2 W2 _U3) Vi ZT + (X +bYY? |4
- T(T?Y + X3)=0
WOV~ [aW2U + bWV —UBR | M =TH
b+#0
. we W:TX
F9): WU - V2 U: ZT + (aX + bY)?
212 .
[TZ + (aX + bY)?]  WIV? - V) V:TY .
-T(TY?2 +X3)=0 M = T5x5
WU(U? -v?)-
b#0
—(U% - V2 (aW + bV )
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