ALMOST-FACTORIAL QUARTIC SURFACES WITH A TACNODAL POINT IN P³

REMO GATTAZZO

Dipartimento di Matematica Università di Padova Via Trieste 63 35100, Padova Italy e-mail: remo.gattazzo@unipd.it

Abstract

The behaviour of birational transformations between particular surfaces in \mathbf{P}^3 and almost-factoriality are investigated. Using a suitable parametrization on \mathbf{P}^2 of the quartic surfaces with a tacnodal point, all almost-factorial surfaces of this kind can be classified. We prove that there are nine classes of such surfaces \mathcal{F} , and for each of them a possible equation is written and its index of almostfactoriality ν is computed. There are surfaces \mathcal{F} with $\nu = 4$, 8, 12. For each irreducible algebraic curve $\mathcal{C} \subset \mathcal{F}$, we outline how to construct a surface \mathcal{G} such that $\mathcal{F} \cdot \mathcal{G} = \mu \mathcal{C}$, with $\mu \leq \nu$.

1. Introduction

There are classes of algebraic surfaces $\mathcal{F} \subset \mathbf{P}^3$ that have the following property: For every algebraic curve $\mathcal{C} \subset \mathcal{F}$, there is an algebraic surface \mathcal{S} such that $\mathcal{F} \cap \mathcal{S} = \mathcal{C}$, or, more precisely, such that $\mathcal{F} \cdot \mathcal{S} = \mu \mathcal{C}$, where μ is the multiplicity $\mu = I(\mathcal{C}, \mathcal{S} \cap \mathcal{F})$ of intersection

© 2014 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 13F15, 14M10, 14E05.

Keywords and phrases: almost-factorial, rational transformations, rational quartic surfaces. Received May 15, 2014

REMO GATTAZZO

between \mathcal{F} and \mathcal{S} along \mathcal{C} . Such a surface \mathcal{F} is called a *set-theoretic* complete intersection surface; and if \mathcal{F} is non-singular in codimension 1, then it is called *almost-factorial* (factorial if $\mu = 1$).

We know that the *index of almost-factoriality* of \mathcal{F} is the integer number ν such that, for every reduced and irreducible curve $\mathcal{C} \subset \mathcal{F}$, there is a surface \mathcal{S} with the property that $\mathcal{S} \cdot \mathcal{F} = \mu \mathcal{C}$, where $\mu \leq \nu$. In this case, we say that \mathcal{F} is ν -almost-factorial.

It is well known that the multiplicity of intersection μ between two surfaces \mathcal{F} and \mathcal{S} along a reduced and irreducible curve \mathcal{C} can be computed by considering their affine parts in a suitable affine space \mathbf{A}^3 in \mathbf{P}^3 , such that $\mathcal{C}_a : \mathcal{C} \cap \mathbf{A}^3$ is a curve again. If one of such surfaces \mathcal{F} is normal, the following valuation can be used. Let $\mathcal{F}_a : \mathcal{F} = 0$, $\mathcal{G}_a : G = 0$, and \mathcal{C}_a be the affine parts of \mathcal{F} , \mathcal{G} , and \mathcal{C} , with $F, G \in k[X, Y, Z]$. Let $k[\mathcal{F}_a] = k[X, Y, Z]/(F) = k[x, y, z]$ and $K = k(\mathcal{F}_a)$ be the quotient field of $k[\mathcal{F}]$, where x, y, z, g denote the canonical projections of the polynomials X, Y, Z, G on $k[\mathcal{F}_a]$. Let \mathbf{p} be the prime ideal of \mathcal{C}_a in $k[\mathcal{F}_a]$, and \mathbf{v} be the valuation centered at \mathbf{p} of the local ring D.V.R. $k[\mathcal{F}_a]_{\mathbf{p}}$. It will defined $\mu = \mathbf{v}(g)$.

Many classes of almost-factorial surfaces in \mathbf{P}^3 are well known. It is worth recalling them here.

The planes are factorial. Only the quadrics \mathcal{F}_2 with a unique double point (cones) are 2-almost-factorial. Among the cubic surfaces \mathcal{F}_3 , there are only three families of almost-factorial surfaces $\mathcal{F}_3 \subset \mathbf{P}^3$ (see [13]). Every irreducible quadric cone or cylinder in \mathbf{A}^3 is 2-almost-factorial, and every quadric paraboloid in \mathbf{A}^3 is factorial. For the affine cubic surfaces $\mathcal{F} \subset \mathbf{A}^3$, there are 82 families of factorial or almost-factorial surfaces (see [4]). For quartic surfaces $\mathcal{F}_4 \subset \mathbf{P}^3$, we know that the "generic" nonsingular surface is factorial (according to Nöther's theorem generalized first by Gröbner; Andreotti and Salmon; and later by Deligne, see [8], [1], [5]), and 33 families of almost-factorial quartic monoids in \mathbf{P}^3 have been described (see [11], [12]).

The normal quartic, which is a Zariski's surface $\mathcal{Z}_p : \mathbb{Z}^p = G_4$ $(X, Y) \subset \mathbf{A}_k^3$, where k is an algebraically closed field of characteristic p > 0 and G_4 is a polynomial of degree ≤ 4 , was examined particularly in a book by Lang (see [3]), in which (pages 150-171) the author tackles the factoriality or almost-factoriality of these surfaces.

Biregular birational transformations between algebraic varieties are known to preserve their almost-factoriality (see [2]). A criterion has been given in [6] for the almost-factoriality of V when a birational transformation of \mathbf{P}^n is encountered in a projectively normal variety V.

To the best of our knowledge, nobody knows whether any quartic surfaces in \mathbf{P}^3 with only double points on them are factorial or almost-factorial.

The aim of this paper was to exhaustively answer the question of which normal quartic surfaces in \mathbf{P}^3 with a tacnodal point on them are almost-factorial.

All the almost-factorial quartic surfaces in \mathbf{P}^3 can be placed in 9 classes to within a linear change of coordinates. Using suitable equations for these surfaces \mathcal{F} , we adopt a constructive process to obtain a surface \mathcal{G} such that for every curve \mathcal{C} on \mathcal{F} , we shall have $\mathcal{F} \cap \mathcal{G} = \mathcal{C}$.

To solve the proposed problem, it is essential to analyze the birational transformations of the surfaces in \mathbf{P}^3 . In the following paragraphs, k denotes an algebraically closed field of characteristic

p = 0, and \mathbf{A}^3 and \mathbf{P}^3 are the affine and projective spaces on k of dimension 3. A point $(a, b, c) \in \mathbf{A}^3$ will also be identified with $(1 : a : b : c) \in \mathbf{P}^3$.

2. Almost-Factoriality of Surfaces in P³ and Birational Transformations

Let F = F(T, X, Y, Z) and $G = G(T_1, X_1, Y_1, Z_1)$ be irreducible homogeneous polynomials, and the surfaces $\mathcal{F} : F = 0 \subset \mathbf{P}^3$ and $\mathcal{G} : G = 0 \subset \mathbf{P}_1^3$ be non-singular in codimension 1. Then, let be

$$k[\mathcal{F}] = k[T, X, Y, Z] / J(\mathcal{F}), \quad k[\mathcal{G}] = k[T_1, X_1, Y_1, Z_1] / J(\mathcal{G}).$$

These rings can be regarded as the rings of regular functions of the affine cones over \mathcal{F} and \mathcal{G} . They are both integral closed rings because \mathcal{F} and \mathcal{G} are non-singular in codim 1. We must remember that a surface $\mathcal{F} \subset \mathbf{P}^3$ is normal, if it is non-singular in codim 1 and, as a complete intersection of \mathbf{P}^3 , it is projectively normal to (see [9], Example 84.5, page 188).

Every rational transformation between projective surfaces in \mathbf{P}^3 can be regarded as the restriction of suitable transformations of projective space.

Let us consider the following rational transformation: $\tau : \mathbf{P}^3 \longrightarrow \mathbf{P}_1^3$

$$\tau : (T_1 : X_1 : Y_1 : Z_1) = (H_0 : H_1 : H_2 : H_3),$$

given by the four homogeneous polynomials of the same degree

$$H_i \in k[T, X, Y, Z], \quad i = 0, ..., 3,$$

whose remainders $\mod J(\mathcal{F})$ does not have a common factor; and the transformation $\sigma: \mathbf{P}_1^3 \longrightarrow \mathbf{P}^3$

$$\sigma: (T:X:Y:Z) = (L_0:L_1:L_2:L_3),$$

given by the four homogeneous polynomials of the same degree

$$L_i \in k[T_1, X_1, Y_1, Z_1], \quad i = 0, ..., 3,$$

whose remainders $\mod J(\mathcal{G})$ does not have a common factor. We also have a birational transformation from \mathcal{F} to \mathcal{G} , if the following holds:

$$F(H_0, \dots, H_3) \in J(\mathcal{F}), \qquad G(L_0, \dots, L_3) \in J(\mathcal{G}), \tag{1}$$

and there are two non-vanishing polynomials $N \in k[T, X, Y, Z]$ and $N_1 \in k[T_1, X_1, Y_1, Z_1]$, for which the following holds:

$$\sigma \circ \tau : (T_1 : X_1 : Y_1 : Z_1) = (N_1 T_1 : N_1 X_1 : N_1 Y_1 : N_1 Z_1) \mod J(\mathcal{G}), (2)$$

and

$$\tau \circ \sigma : (T : X : Y : Z) = (NT : NX : NY : NZ) \mod J(\mathcal{F}).$$
(3)

The relations (1), (2), (3) imply that the restrictions of τ on $\mathcal{F} \cap \{N \neq 0\}$ and of σ on $\mathcal{G} \cap \{N_1 \neq 0\}$ are regular maps, one being the inverse of the other.

Indeed, if $P = (t_P : x_P : y_P : z_P) \in \mathcal{F} \cap \{N \neq 0\}$ from (2), then we shall have

$$P = (N(P)t_P : N(P)x_P : N(P)y_P : N(P)z_P) = \sigma(\tau(P)),$$

with $\tau(P) = (L_0(P) : L_1(P) : L_2(P) : L_3(P))$, and with $L_i(P) \neq 0$, for at least one i, i = 0, ..., 3 (otherwise $\sigma((0:0:0:0)) = (0:0:0:0)$ is not the point P). By this and from (1), we obtain $\tau(P) \in \mathcal{G}$.

Below, we call $\mathcal{F} \cap \{N \neq 0\}$ the set of regularity of τ .

In the same way, we can see that, if $Q \in \mathcal{G} \cap \{N_1 \neq 0\}$, the point $\sigma(Q)$ exists and $\sigma(Q) \in \mathcal{F}$.

REMO GATTAZZO

Proposition 1. Let $\tau : \mathcal{F} \longrightarrow \mathcal{G}$ be a birational transformation between two normal algebraic surfaces in \mathbf{P}^3 , and let \mathcal{G} be almostfactorial. \mathcal{F} is almost factorial if and only if every irreducible curve $\mathcal{D} \subset \mathcal{F}$, whose image is a point on \mathcal{G} is a set-theoretic complete intersection of \mathcal{F} .

Proof. For τ we keep the previously notations. The assumption that dim $\mathcal{F} = \dim \mathcal{G} = 2$ implies that τ gives a birational transformation that induces a k isomorphism τ^* between the rational fields on \mathcal{G} and \mathcal{F} . We can apply "Zariski's main theorem" (see [10], page 49 in the form given by Bourbaki, Chapter 5, Examples 4-7) to the restriction of the birational transformation τ between the affine varieties $X^2 = \mathcal{F} \cap \{N \neq 0\}$ and $Y^2 = \mathcal{G} \cap \{N_1 \neq 0\}$ of \mathbf{P}^3 because X^2 and Y^2 are non-singular in codim 1 (so they are projectively normal). According to this theorem, for said $y = \tau(x)$ to be a point at Y^2 for $x \in X^2$ can only happen in one of two situations:

(1) if τ^{-1} is regular at *y*, or

(2) if there is a divisor \mathcal{D} on $\mathcal{F}, x \in \mathcal{D}$ (called an exceptional divisor), the projective closure $\overline{\tau(\mathcal{D})}$ has dimension 0.

An irreducible curve on $\mathcal{F} \cap \{N \neq 0\}$ can therefore be the pre-image either of a curve or of a point on $\mathcal{G} \cap \{N_1 \neq 0\}$, so the hypothesis in Proposition 1 is necessary. Now, we have to demonstrate that it is also sufficient.

According to the hypothesis in Proposition 1, every irreducible curve \mathcal{D}' on the set of non-regularity for τ is a set-theoretic complete intersection of \mathcal{F} with a surface \mathcal{R}' in \mathbf{P}^3 . To show that \mathcal{F} is almost-factorial, we need to verify that every irreducible curve \mathcal{D} on $\mathcal{F} \cap \{N \neq 0\}$, whose image is a curve on $\mathcal{G}, \mathcal{C} = \tau(\mathcal{D})$ is actually a set-theoretic complete intersection of \mathcal{F} .

Denoting the restrictions of τ as τ'' , τ' , we have the following situation:

As \mathcal{G} is almost-factorial, a surface $\mathcal{H} : H(T_1, X_1, Y_1, Z_1) = 0$ in \mathbf{P}_1^3 exists such that $\mathcal{H} \cap \mathcal{G} = \mathcal{C} = \tau(\mathcal{D})$. Let us consider the polynomial $H(H_0, H_1, H_2, H_3) = L(T, X, Y, Z)$ and denote the surface $\mathcal{L} : L(T, X, Y, Z) = 0$.

We consider the divisor

$$\mathcal{F} \cdot \mathcal{L} = \nu \mathcal{D} + \nu_1 \mathcal{D}'_1 + \ldots + \nu_t \mathcal{D}'_t, \quad \nu > 0, \, \nu_i > 0, \, 1 \le j \le t.$$

None of the components $\mathcal{D}'_j \neq \mathcal{D}, 1 \leq j \leq t$, can be transformed in \mathcal{C} because τ is invertible on $\mathcal{C} = \tau(\mathcal{D})$, so it belongs to $\mathcal{F} \cap \{N = 0\}$, and $\tau(\mathcal{D}'_j)$ is a point on \mathcal{G} .

Based on the hypothesis in Proposition 1, there are suitable surfaces $\mathcal{R}_j : R_j(T, X, Y, Z) = 0, 1 \le j \le t$, that cut on \mathcal{F} the divisors

$$\mathcal{R}_j \cdot \mathcal{F} = \mu_j \mathcal{D}'_j, \quad \mu_j > 0, \quad 1 \le j \le t.$$

Let $\mu = m.c.m.\{\mu_1, ..., \mu_t\}$ and $R = \prod_{i=1}^t R_j^{\frac{\mu \nu_j}{\mu_j}}$. If we consider the surface $\mathcal{R} : R = 0$ in \mathbf{P}^3 , we have first

$$\mathcal{F} \cdot \mathcal{R} = \mu(\nu_1 \mathcal{D}'_1 + \ldots + \nu_t \mathcal{D}'_t),$$

and afterwards the canonical projections of L and of R in $k[\mathcal{F}]$, called l and r, provide

$$\operatorname{div}\left(\frac{l^{\mu}}{r}\right) = \mu(\nu \mathcal{D} + \nu_1 \mathcal{D}'_1 + \dots + \nu_t \mathcal{D}'_t) - \mu(\nu_1 \mathcal{D}'_1 + \dots + \nu_t \mathcal{D}'_t) = \mu \nu \mathcal{D}$$

We can apply the theorem of the integral closed Noetherian's domain to $k[\mathcal{F}]$, and this enables us to find a polynomial $S \in k[T, X, Y, Z]$ such that it defines the divisor $\mu\nu\mathcal{D}$ on \mathcal{F} . The surface S: S = 0, thus intersects \mathcal{F} along the curve \mathcal{D} with multiplicity $\mu\nu$. \mathcal{D} is therefore a set-theoretic complete intersection of \mathcal{F} , and \mathcal{F} is therefore almost-factorial.

Lemma 1. If a pair of skew curves C_1 and C_2 exists on a surface \mathcal{F} of \mathbf{P}^3 , then \mathcal{F} is not almost-factorial.

Proof. Let C_1 and C_2 be two skew curves on $\mathcal{F}, C_1 \cap C_2 = \emptyset$. If \mathcal{F} is almost-factorial, then there are two surfaces $\mathcal{H}_1, \mathcal{H}_2 \subset \mathbf{P}^3$ such that

$$\mathcal{F} \cdot \mathcal{H}_1 = n_1 \mathcal{C}_1, \quad \mathcal{F} \cdot \mathcal{H}_2 = n_2 \mathcal{C}_2$$

As every curve in \mathbf{P}^3 has a non-empty intersection with every surface, we have the contradiction

$$\emptyset \neq \mathcal{C}_1 \cap \mathcal{H}_2 = \mathcal{F} \cap \mathcal{H}_1 \cap \mathcal{H}_2 = \mathcal{C}_1 \cap \mathcal{C}_2.$$

Remark 1. The proof of Proposition 1 enables us to construct a suitable surface S for which, given an almost-factorial surface \mathcal{F} and an irreducible curve thereon \mathcal{D} , it holds that $\mathcal{D} = \mathcal{F} \cap S$. In the case of \mathcal{F} being rational, see the example in [6].

Lemma 2. Let \mathcal{F} be a normal surface in \mathbf{A}^3 , deg $\mathcal{F} = n \ge 2$ and \mathbf{r} be a straight line on \mathcal{F} . For \mathbf{r} to be a complete intersection of \mathcal{F} with a surface \mathcal{G} ,

$$\mathcal{F} \cdot \mathcal{G} = \mu \mathbf{r}, \quad \mu = \deg \mathcal{F} \deg \mathcal{G},$$

it is necessary that the plane tangent to \mathcal{F} along **r** remains fixed.

Proof. This follows from the statement proved in [7].

170

3. The Quartic Surfaces in \mathbf{P}^3 with a Tacnodal Point

Below, \mathcal{F} will be a normal quartic algebraic surface in \mathbf{P}^3 with a tacnodal point, that we can assume to be $(0:0:0:1) = Z_{\infty}$, and we can take the cone tangent to \mathcal{F} at it (such a cone consists of two coincident planes) to be T = 0 (called the *tacnodal tangent plane*). \mathcal{F} will then be given by the equation:

$$Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0, \quad \phi_4, \phi_2 \in k[T, X, Y],$$

where ϕ_4 and ϕ_2 are homogeneous polynomials, ϕ_4 of degree four and ϕ_2 of degree two, or $\phi_2 = 0$. Let us denote $\Delta = \phi_2^2 - \phi_4$, then the surface \mathcal{F} can be represented again with an equation in the form

$$\mathcal{F}: (ZT + \phi_2)^2 - \Delta = 0$$

We call T = 0, the *plane to infinity* of the affine space $\mathbf{A}^3 = \mathbf{P}^3 - \{T = 0\}$.

To recognize and classify the kinds of quartic almost-factorial surfaces with a tacnodal point, we consider the following obvious facts: The section between \mathcal{F} and its tacnodal tangent plane T = 0, i.e., $\mathcal{F}_{\infty} = \mathcal{F} \cap \{T = 0\}$, is splitting into no more than four distinct lines; the cone $\Delta = 0$ of vertex Z_{∞} is invariant under linear transformation of coordinates in $\mathbf{A}^3 = \mathbf{P}^3 - \{T = 0\}$, leaving the plane T = 0 and the point Z_{∞} unchanged.

Lemma 3. Let $\mathcal{F}: Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$ be a quartic surface in \mathbf{P}^3 . Then

(1) if two linear polynomials $\phi_1 = aX + bY + cT$, $\psi_1 = a'X + b'Y + c'T$, exist with $ab' - a'b \neq 0$, such that both divide ϕ_4 , then a pair of skew lines exists on \mathcal{F} ; (2) if a linear polynomial $\phi_1 = aX + bY + cT$, divides ϕ_2 , and ϕ_1^2 divides ϕ_4 , then \mathcal{F} is singular along the line $\{T = \phi_1 = 0\}$;

(3) a surface $\mathcal{F}: Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$ has tacnodal points at O and at Z_{∞} , if and only if the polynomials ϕ_2 , ϕ_4 are in k[X, Y];

(4) if a surface $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$ has tacnodal points at Oand at Z_{∞} and their tangent tacnodal planes intersect at least in two distinct points A_{∞} and B_{∞} of \mathcal{F}_{∞} , then \mathcal{F} has the skew lines $Z_{\infty}A_{\infty}$, OB_{∞} ;

(5) on the surface $\mathcal{F}: Z^2T^2 + 2ZT(aX^2 + 2bXY + cY^2) + X^4 = 0$ if it is c = 0, then \mathcal{F} is singular along the line $\{X = T = 0\}$. Assuming that c = 1, to within a substitution $Y = -bX + Y_1$, we can rewrite the equation for \mathcal{F} in the form $Z^2T^2 + 2ZT[(a - b^2)X^2 + Y_1^2] + X^4 = 0$. For $a = b^2 \pm 1$, \mathcal{F} is singular along the curves $\{Y_1 = 0 = ZT \pm X^2\}$.

Proof. (1) The lines $\{Z = 0 = aX + bY + cT\}$ and $\{T = 0 = a'X + b'Y + c'T\}$ exist on \mathcal{F} . From $ab' - a'b \neq 0$, their intersection is $\{T = Z = X = Y = 0\} = \emptyset$.

(2) The section of \mathcal{F} and the pencil of the planes $\{\phi_1 - \lambda T = 0\}$ is given by

$$Z^{2}T^{2} + 2ZT\lambda T\phi_{1}' + (\lambda T)^{2}\phi_{2}' = T^{2}(Z^{2} + 2Z\phi_{1}' + \lambda^{2}\phi_{2}') = 0,$$

with suitable $\phi'_1, \phi'_2 \in k[T, X, Y]$.

We obtain the line $\{T = 0 = \phi_1\}$ counted twice for every $\lambda \in k$. \mathcal{F} is then singular along such a line.

(3) $\mathcal{F}: Z^2T^2 + 2ZT\phi_2(X, Y) + \phi_4(X, Y) = 0$ remains invariable under the symmetry of \mathbf{P}^3 , which changes Z with T. The symmetric of the tacnodal point Z_{∞} is the point O, which is then a tacnodal point on \mathcal{F} , and the plane Z = 0 is the tacnodal plane tangent to \mathcal{F} at O. Conversely, if O is another tacnodal point of \mathcal{F} , we can assume that the tangent tacnodal plane will be Z = 0. The equation for \mathcal{F} will be unchanged.

(4) $Z_{\infty}A_{\infty} \cap OB_{\infty} = \emptyset$.

(5) If c = 0, then X divides $aX^2 + 2bXY$ and X^2 divides X^4 . Then, from (2), \mathcal{F} is singular along $\{X = T = 0\}$. We can assume that c = 1.

Substituting $Y = -bX + Y_1$ in $Z^2T^2 + 2ZT(aX^2 + 2bXY + Y^2) + X^4 = 0$, we obtain $Z^2T^2 + 2ZT[(a - b^2)X^2 + Y_1^2] + X^4 = 0$; if $a - b^2 = \pm 1$, then $\mathcal{F} : (ZT \pm X^2)^2 + 2ZTY_1^2 = 0$. At every point on the curves $\{Y_1 = 0 = ZT \pm X^2\}$, the four partial derivatives of $(ZT \pm X^2)^2 + 2ZTY_1^2$ become zero. This shows that \mathcal{F} is singular along these curves.

Proposition 2. A quartic surface in \mathbf{P}_k^3 that is non-singular in codimension 1 with two tacnodal points is not almost-factorial, if the field k is supposed more than numerable.

Proof. Based on Lemma 3, points (4) and (5), we can assume that

$$\mathcal{F}: Z^2 T^2 + 2ZT(aX^2 + Y^2) + X^4 = 0, \quad a^2 \neq 1.$$

Let $\sigma : (T_1 : X_1 : Y_1 : Z_1) = (TX^2 : X^3 : TXY : T^2Z)$ be the composition of two blow-ups, one centered in the tacnodal point O of \mathcal{F} , and one on a line infinitely near to O. The restriction on \mathcal{F} of σ has as inverse the rational transformation

$$\sigma^{-1}:(T:X:Y:Z)=(T_1^3:T_1^2X_1:T_1X_1Y_1:X_1^2Z_1).$$

The proper transform by σ of ${\mathcal F}$ is the cubic surface

$$\mathcal{G}: Z_1^2 T_1 + 2Z_1 (aT_1^2 + Y_1^2) + T_1^3 = 0,$$

 \mathcal{G} is a non-singular cone in codimension 1 (elliptic), if $a^2 \neq 1$. So \mathcal{G} and \mathcal{F} are birationally equivalent non-rational surfaces. The locus of the non-regularity of σ is given by M = 0, where $M = T^2 X^6$, because

$$\sigma \circ \sigma^{-1} : (T : X : Y : Z) = (T^3 X^6 : T^2 X^7 : T^2 X^6 Y : T^2 X^6 Z).$$

The section of $\,\mathcal{F}\,$ with the set of non-regularity of $\,\sigma\,$ is

$$\mathcal{F} \cap \{XT = 0\} = \{X = Z = 0\} \cup \{X = T = 0\} \cup \{X = ZT + 2Y^2 = 0\}.$$

The lines $r : \{X = Z = 0\}, s : \{X = T = 0\}$ are the complete sections of \mathcal{F} with the tacnodal planes tangent to \mathcal{F} at O and at Z_{∞} .

Now, we show that the conic $C: \{X = ZT + 2Y^2 = 0\}$ is a settheoretic complete intersection of \mathcal{F} . \mathcal{F} is normal, so $\operatorname{div}\left(\frac{-x^4}{zt}\right)$ on it is

$$4\mathcal{C} + 4\mathbf{r} + 4\mathbf{s} - 4\mathbf{r} - 4\mathbf{s} = 4\mathcal{C} = \operatorname{div}(\frac{z^2t^2 + 2zt(ax^2 + y^2)}{zt})$$
$$= \operatorname{div}(zt + 2(ax^2 + y^2)).$$

The surface $\{ZT + 2(aX^2 + Y^2) = 0\}$ thus intersects \mathcal{F} along $4\mathcal{C}$.

So, from Proposition 1, \mathcal{F} is almost-factorial if and only if \mathcal{G} is almost-factorial.

We know that \mathcal{G} is not almost-factorial (see [13], Proposition 11, page 171, where the field k is supposed more than numerable), so \mathcal{F} will not be either.

Lemma 4. Let $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0, \phi_4, \phi_2 \in k[T, X, Y]$, be a normal quartic almost-factorial surface. Then, the plane tangent to \mathcal{F} along every component line of \mathcal{F}_{∞} can only be T = 0.

In addition, only one of the following cases can happen:

(1) $\mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}, \mathbf{r}, \mathbf{s} \text{ straight lines, } \mathbf{r} \neq \mathbf{s};$

(2) $\mathcal{F}_{\infty} = 4\mathbf{r}$.

If T divides ϕ_2 , then only case (2) holds.

Proof. Let $\mathbf{r} \cup \mathbf{s} \subset \mathcal{F}_{\infty}$ with $\mathbf{r} \neq \mathbf{s}$. We can assume, for example, that $\mathbf{r} : T = Y = 0$, $\mathbf{s} : T = X + \alpha Y = 0$, $\alpha \in k$. From Lemma 2, it follows that the plane tangent to \mathcal{F} along \mathbf{r} remains fixed; if it were different from T = 0, let us assume, for instance, that $\alpha : Y = 0$. From $I(\mathbf{r}, \mathcal{F} \cap \alpha) \geq 2$, there must therefore be suitable homogeneous polynomials $\phi'_1, \phi''_1, \phi''_3, \phi'_2 \in k[T, X, Y]$, such that, $\phi_2 = Y\phi'_1 + T\phi''_1$, $\phi_4 = Y\phi'_3 + T^2\phi'_2$, resulting in

$$\mathcal{F} : T^2(Z^2 + 2Z\phi_1'' + \phi_2') + Y(2ZT\phi_1' + \phi_3') = 0.$$

The section between \mathcal{F} and α is

$$\mathcal{F} \cdot \{Y = 0\} = 2\mathbf{r} + \mathcal{C}, \text{ where } \mathcal{C} : \{Y = Z^2 + 2Z\phi_1'' + \phi_2' = 0\}.$$

The two curves \mathbf{s} and \mathcal{C} on \mathcal{F} are skew because their intersection is

$$\mathbf{s} \cap \mathcal{C} = \{T = X + aY = Y = Z^2 + 2Z\phi_1'' + \phi_2' = 0\} = \emptyset.$$

From Lemma 1, this contradicts the assumption that \mathcal{F} is almost-factorial.

 \mathcal{F}_{∞} thus consists of two distinct lines at most. Along these lines, the (fixed) plane tangent to \mathcal{F} is T = 0. So we can only have the two situations

 $\mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}, \ \mathbf{r}, \mathbf{s} \text{ straight lines, } \mathbf{r} \neq \mathbf{s}, \text{ or } \mathcal{F}_{\infty} = 4\mathbf{r}.$

Now, let us suppose that $\mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}$, \mathbf{r} , \mathbf{s} distinct lines, and $\phi_2 = T\phi_1$, with $\phi_1 \in k[T, X, Y]$. Then $\mathcal{F} : Z^2T^2 + 2ZT^2\phi_1 + \phi_4 = 0$. To within a linear change of coordinates in \mathbf{P}^3 , we can assume that $\mathcal{F}_{\infty} : \{X^2Y^2 = 0 = T\}$ and let

$$\phi_4 = X^2 Y^2 + T(aX^3 + bX^2 Y + cXY^2 + dY^3) + T^2 \psi_2, \quad \psi_2 \in k[T, X, Y]$$

The equation for the surface $\mathcal{F}: Z^2T^2 + 2ZT^2\phi_1 + \phi_4 = 0$, can also be written in the form

$$\mathcal{F} : [Y^2 + T(aX + bY)][X^2 + T(cX + dY)] + T^2[Z^2 + 2Z\phi_1 - (aX + bY)(cX + dY) + \psi_2] = 0.$$

This means that the line \mathbf{r} : T = X = 0 and the quartic \mathcal{Q} , which is the intersection of the quadrics $Y^2 + T(aX + bY) = 0$ and $Z^2 + 2ZT\phi_1 - (aX + bY)(cX + dY) + \psi_2 = 0$, belong to \mathcal{F} . Now, the curves \mathbf{r} and \mathcal{Q} on \mathcal{F} are skew because

$$\mathbf{r} \cap \mathcal{Q} = \{T = X = Y^2 = Z^2 = 0\} = \emptyset.$$

This fact, from Lemma 1, contradicts the hypothesis that \mathcal{F} is almost-factorial. So, if *T* divides ϕ_2 , then $\mathcal{F}_{\infty} = 4\mathbf{r}$.

4. Quartic Surfaces in P³ with a Tacnodal Point and Two Distinct Principal Tangents

As a first step in the investigation into almost-factoriality for the quartic surfaces in \mathbf{P}^3 with a tacnodal point, we have

Lemma 5. Let $\mathcal{F}: Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$ be a quartic surface in \mathbf{P}^3 with $\mathcal{F} \cdot \{T = 0\} = \mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}, \mathbf{r} \neq \mathbf{s}$. If we assume that surfaces $\mathcal{G}: \mathcal{G} = 0$ and $\mathcal{H}: \mathcal{H} = 0$ exist such that $4 \operatorname{deg}(\mathcal{G})\mathbf{r} = \mathcal{G} \cdot \mathcal{F}$ and $4 \operatorname{deg}(\mathcal{H})\mathbf{s} = \mathcal{H} \cdot \mathcal{F}$, then the surfaces \mathcal{G}, \mathcal{H} must be quadrics $Q_1 = 0$, $Q_2 = 0$ and \mathcal{F} can be written as

$$\mathcal{F}: Q_1 Q_2 + T^4 = 0.$$

Proof. Let us take \mathcal{F} , with $\mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}, \mathbf{r} \neq \mathbf{s}$. To within a suitable choice of the coordinates in \mathbf{P}^3 , we can assume that $\mathcal{F}_{\infty} = \{X^2Y^2 = 0\} \cdot \{T = 0\}$, where $\mathbf{r} : X = T = 0, \mathbf{s} : Y = T = 0$.

Let $\mathcal{G}: G = 0$ and $\mathcal{H}: H = 0$ be surfaces of degree n such that $4n\mathbf{r} = \mathcal{G} \cdot \mathcal{F}$ and $4n\mathbf{s} = \mathcal{H} \cdot \mathcal{F}$ (we can assume that $\deg(G) = \deg(H)$, substituting possible G and H with their suitable powers). In the pencil of surfaces $\Phi: \lambda GH + \mu T^{2n} = 0$, we consider $\Phi_0: \lambda_0 GH + \mu_0 T^{2n} = 0$, which passes through a point P_0 on $\mathcal{F} \cap \{T \neq 0\}$. The surface Φ_0 cut on $\mathcal{F}: F = 0$ a divisor that is the sum of $4n\mathbf{r} + 4n\mathbf{s}$ and of a curve passing through P_0 , and its degree is strictly greater than $8n = \deg \Phi_0 \deg F$. According to Bézout's theorem, the surface $\Phi_0 = 0$ is reducible and \mathcal{F} is therefore one of its components. So, a homogeneous polynomial $L \in k[T, X, Y]$ of degree 2n - 4 exists for which

$$\lambda_0 GH + \mu_0 T^{2n} = FL.$$

But the intersection between $T^{2n} = 0$ and $\Phi_0 : \lambda_0 GH + \mu_0 T^{2n} = 0$ is $4n\mathbf{r} + 4n\mathbf{s}$, and this coincides with the intersection between $T^{2n} = 0$ and \mathcal{F} . It follows that $\{L = T = 0\} = \emptyset$, thus $L = c \in k, c \neq 0$, $\deg(L) = 8n - 4 = 0$, then n = 2. In the light of all the above, $\lambda_0 GH + \mu_0 T^4 = cF$ and we can assume $\lambda_0 = c, \mu_0 = c$, so we can write $F = Q_1 Q_2 + T^4$, where

$$Q_1 = X^2 + T(Z + aX + bY + cT) = 0,$$

and

$$Q_2 = Y^2 + T(Z + a'X + b'Y + c'T) = 0.$$

The coefficients of the monomials X^2 and Y^2 can both be assumed to be 1.

Instead of $Q_2 = Y^2 + T(Z + a'X + b'Y + c'T) = 0$, we can take $Q_2 = Y^2 + TZ = 0$ by substituting Z with Z - a'X - b'Y - c'T and (a, b, c) with (a - a', b - b', c - c').

Proposition 3. The quartics $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$ in \mathbf{P}^3 with $\mathcal{F} \cdot \{T = 0\} = \mathcal{F}_{\infty} = 2\mathbf{r} + 2\mathbf{s}, \mathbf{r} \neq \mathbf{s}$, are almost-factorial if and only if they can be written in the form

$$\mathcal{F}(1) : [X^2 + T(Z + aX + bY + cT)][Y^2 + TZ] + T^4 = 0,$$

with $(4c + b^2 - a^2)^2 = 64.$

 $\mathcal{F}(1)$ are 8-almost-factorial.

Proof. From Lemma 5, we can assume that $\mathcal{F}: Q_1Q_2 + T^4 = 0$, where $Q_1 = X^2 + T(Z + aX + bY + cT) = 0$ and $Q_2 = Y^2 + TZ = 0$.

Each of the straight lines $r,\,s$ is a complete intersection of $\,{\cal F}\,$ with multiplicity 8 because

$$\mathcal{F} \cdot \{Q_1 = 0\} = 8\{T = X = 0\} \text{ and } \mathcal{F} \cdot \{Q_2 = 0\} = 8\{T = Y = 0\}.$$

In addition, we obtain a parametrization of $\mathcal F$ on $\mathbf P^2$ by means of

$$\tau : (T : X : Y : Z) = (WPP_1 : WPP_2 : P_3 : WP^2),$$

with the following polynomials of k[W, U, V]:

$$\begin{split} P &= UW(2V - aW - bW), \\ P_1 &= -UV^2 - U^2W + bUVW + cUW^2 - W^3, \\ P_2 &= UV^2 - U^2W - aUVW + cUW^2 - W^3, \\ P_3 &= UP^2 - WP_1^2 - PW(aP_1 + bP_2 + cP). \end{split}$$

On \mathcal{F} the transformation

$$(W: U: V) = (T^{2}: (X^{2} + ZT + T(aX + bY + cT)): (Y - X)T),$$

is the inverse of τ . To apply Proposition 1 to \mathcal{F} , we must compute the polynomial defining the set of non-regularity of the parametrization on \mathcal{F} . In the present case, the polynomial is

$$M = T^{7}[(a+b)T + 2X - 2Y]^{2}[X^{2} + TZ + T(aX + bY + cT)]^{2},$$

M = 0 intersects \mathcal{F} along the two lines **r**, **s**, and along the section between \mathcal{F} with the plane

$$\pi : (a+b)T + 2X - 2Y = 0.$$

As a result, the intersection between π and \mathcal{F} generically splits into two conics, C_1 and C_2 , and they coincide if $(4c + b^2 - a^2)^2 = 64$. For $c = \frac{a^2 - b^2}{4} - 2$ and for $c = \frac{a^2 - b^2}{4} + 2$, indeed we have, respectively, the surfaces

$$\left(\frac{a+b}{2}T+X\right)^2 - T^2 + TZ = 0, \quad \left(\frac{a+b}{2}T+X\right)^2 + T^2 + TZ = 0.$$

On these two surfaces, the plane $\pi : (a + b)T + 2X - 2Y = 0$ intersects them along a conic counted twice. We denote with

$$\mathcal{F}(1): [X^2 + T(Z + aX + bY + cT)][Y^2 + TZ] + T^4 = 0,$$

with $(4c + b^2 - a^2)^2 = 64.$

 $\mathcal{F}(1)$ is almost-factorial and its index of almost-factoriality is $\nu = 8$.

Now, we prove that \mathcal{F} is not almost-factorial if $(4c + b^2 - a^2)^2 \neq 64$.

Let d = b - a. When *c* satisfies the equation $2cd^2 + d^3b + 8 = 0$, the irreducible conics

$$\mathcal{D}: \begin{cases} 2X + 2Y - dT &= 0, \\ ZT + X^2 - dXT &= 0, \end{cases}$$

are a subset of \mathcal{F} . We consider the affine space $\mathbf{A}^3 = \mathbf{P}^3 \cap \{T \neq 0\}$ and we will have $\mathcal{F}_a = \mathcal{F} \cap \mathbf{A}^3$ and $\mathcal{D}_a = \mathcal{D} \cap \mathbf{A}^3$. As $\mathcal{D}(\mathcal{D}_a)$ are irreducible curves, if \mathcal{D} is a set-theoretic complete intersection of \mathcal{F} , then \mathcal{D}_a will be a set-theoretic complete intersection of \mathcal{F}_a too. Let $x = \frac{X}{T}$, $y = \frac{Y}{T}$, $z = \frac{Z}{T}$ be affine coordinates in \mathbf{A}^3 . We have

$$\mathcal{D}_a = \begin{cases} y = -x + \frac{d}{2}, \\ z = -x^2 + dx \end{cases}$$

Now, we consider De Jonquieres' transformation of A^3

$$DJ: \{x_1 = x, y_1 = y + x_1 - \frac{d}{2}, z_1 = z - dx_1 + x_1^2\},\$$

DJ transform \mathcal{F}_a and \mathcal{D}_a , respectively, on a surface \mathcal{G}_a and on the straight line $\mathbf{r} : \{y_1 = z_1 = 0\}$ on \mathcal{G}_a . As DJ is an isomorphism of \mathbf{A}^3 , \mathcal{D}_a is a complete intersection of \mathcal{F}_a if \mathbf{r} is a complete intersection of \mathcal{G}_a . This fact holds if it is satisfied the necessary condition stated in [7] (Lemma 2) analyzing how varies the plane tangent to \mathcal{G}_a at a generic point $(p, 0, 0) \in \mathbf{r}$. This is $(d^5 + ad^4 - 16d + 32p)y_1 + (d^4 - 16)z_1 = 0$. As (p, 0, 0) moves along \mathbf{r} , the plane remains fixed if and only if $d^4 - 16 = 0$, and it is only in this case that the straight line \mathbf{r} can be a complete intersection on the surface \mathcal{G}_a .

Now we compute $A = (4c + b^2 - a^2)^2$, substituting b = d + a, $c = -\frac{d^3b + 8}{2d^2}$ in A. Thus, $A = 32 + \frac{256}{d^4} + d^4$ and A = 64 if and only if $d^4 = 16$. This leads us to conclude that, if $(4c + b^2 - a^2)^2 \neq 64$, then the curves \mathcal{D} on \mathcal{F} cannot be a set-theoretic complete intersection of \mathcal{F} . This goes to show that \mathcal{F} is almost-factorial if and only if $(4c + b^2 - a^2)^2 = 64$.

5. Quartic Surfaces in P³ with a Tacnodal Point and Only One Principal Tangent

We can write $\mathcal{F}: (ZT + \phi_2)^2 - \Delta = 0$, where $\Delta = \phi_2^2 - \phi_4$.

Let us consider the birational transformation τ : $\mathbf{P}^3 \longrightarrow \mathbf{P}_1^3$

$$\tau : (T_1 : X_1 : Y_1 : Z_1) = (T^2 : TX : TY : (TZ + \phi_2)),$$
(4)

and we have, for its restriction on $\mathcal F$

$$\tau^{-1}: (T:X:Y:Z) = (T_1^2:T_1X_1:T_1Y_1:(T_1Z_1-\phi_2)),$$

where $\phi'_2 = \phi_2(T_1, X_1, Y_1)$.

The set of non-regularity of τ is T = 0, and $T_1 = 0$ for τ^{-1} , because we have

$$\tau \circ \tau^{-1} : (T : X : Y : Z) = (T^4 : T^3 X : T^3 Y : T^3 Z),$$

and

$$\tau^{-1} \circ \tau : (T_1 : X_1 : Y_1 : Z_1) = (T_1^4 : T_1^3 X_1 : T_1^3 Y_1 : T_1^3 Z_1).$$

Using τ , we obtain

$$\begin{aligned} \tau(\mathcal{F}) &: [T_1 Z_1 - \phi_2(T_1, X_1, Y_1)] T_1^2 + \phi_2(T_1^2, X_1 T_1, Y_1 T_1) \}^2 - \Delta(T_1^2, X_1 T_1, Y_1 T_1) \\ &= T_1^4 [Z_1^2 T_1^2 - \Delta(T_1, X_1, Y_1)] = 0. \end{aligned}$$

The proper transform of \mathcal{F} by τ is $\mathcal{H}: Z_1^2 T_1^2 - \Delta(T_1, X_1, Y_1) = 0.$

If \mathcal{F} is almost-factorial, then the affine part $\mathcal{F} \cap \{T \neq 0\}$ of \mathcal{F} is almost-factorial too because the exceptional divisor for τ is the line $\mathcal{F} \cap \{T = 0\}$, counted 4 times. So \mathcal{H} is almost-factorial if its affine part $\mathcal{H} \cap \{T_1 \neq 0\}$ is almost-factorial, and $\mathcal{H}_{\infty} = \mathcal{H} \cap \{T_1 = 0\}$ is a complete intersection in \mathbf{P}_1^3 .

REMO GATTAZZO

To examine \mathcal{H} , we have to distinguish between three cases where $\Delta = \phi_2^2 - \phi_4$ is irreducible, or a factor of Δ is *T* or not *T*.

5.1. The surfaces \mathcal{F} with $\mathcal{F}_{\infty} = 4r$ and Δ are irreducible

First, we examine a surface of the equation $\mathcal{F}: Z^2T^2 + \phi_4(T, X, Y) = 0$ of the kind $\mathcal{H}: Z_1^2T_1^2 - \Delta(T_1, X_1, Y_1) = 0$ just found.

Lemma 6. The polynomial $\phi_4 = -X^4 + TY^3 + T(X\phi_2 + T\chi_2)$ is irreducible for every homogeneous polynomial $\psi_2, \chi_2 \in k[T, X, Y]$.

Proof. A suitable splitting of ϕ_4 in k[T, X, Y] would be one of two kinds:

$$\phi_4 = [-X^3 + aX^2Y + bXY^2 + cY^3 + T(\cdots)](X + dY + eT);$$
 a, b, c, d, $e \in k$,
 $\phi_4 = [-X^2 + aXY + bY^2 + T(\cdots)][X^2 + cXY + dY^2 + T(\cdots)];$ a, b, c, $d \in k$.
As in ϕ_4 , X^3Y , X^2Y^2 , XY^3 have zero as a coefficient, and in both the
equalities it must hold that $a = b = c = d = 0$; but then the monomial
 TY^3 has zero as a coefficient: Contradiction!. This shows that ϕ_4 is
irreducible.

Lemma 7. Let $\mathcal{F}: Z^2T^2 + \phi_4 = 0 \subset \mathbf{P}^3$ be a quartic surface, where

$$\phi_4 = TY^3 + T[X\psi_2(T, X, Y) + T\chi_2(T, X, Y)] + X^4.$$

A suitable plane Z = lT exists that intersects the surface \mathcal{F} along an irreducible curve $\mathcal{C} : \mathcal{F} \cap \{Z = lT\}$, which proves to be singular in at least one point $P_0 \notin \{T = 0\}$.

By means of a suitable choice of coordinates in $\mathbf{A}^3 = \mathbf{P}^3 - \{T = 0\}$, we can assume ϕ_4 of the form

$$\phi_4 = -(X + aT)^2 X^2 + TY(bX^2 + cXY + Y^2 + dXT + eYT),$$

with $a, b, c, d, e \in k$.

Proof. Let us first prove the existence of a section $C : \{Z - lT = \phi_4 = 0\}$ on \mathcal{F} that is irreducible and it has a singular point P_0 on it that does not belong to the plane T = 0. Let $F = l^2T^4 - X^4 + T\phi_3$, where $\phi_3 = Y^3 + X\psi_2(T, X, Y) + T\chi_2(T, X, Y)$; by choosing suitable $l \in k$, the homogeneous system in T, X, Y

$$\begin{cases} \frac{\partial F}{\partial T} = & 4l^2 T^3 + \phi_3 + T \frac{\partial \phi_3}{\partial T} = 0, \\ \frac{\partial F}{\partial X} = & -4X^3 + T \frac{\partial \phi_3}{\partial X} = 0, \\ \frac{\partial F}{\partial Y} = & T \frac{\partial \phi_3}{\partial Y} = T[3Y^2 + X(\cdots) + T(\cdots)] = 0, \end{cases}$$

has at least one solution that gives a point $P_0 = (t_0 : x_0 : y_0 : lt_0)$, with $t_0 \neq 0$. Indeed, a possible point with $t_0 = 0 (0 : x_0 : y_0 : 0)$ singular for C, would satisfy

$$\{0 = T = X = \phi_3 = Z\} = \{0 = T = X = Y^3 = Z\}.$$

So $x_0 = y_0 = 0$ and such a point P_0 does not exist.

Now $C: \{Z - lT = l^2T^4 - X^4 + T\phi_3 = 0\}$ cannot be reducible because the plane Z = lT is transversal to the cone $l^2T^4 - X^4 + [(Y^3 + X\psi_2(T, X, Y) + T\chi_2(T, X, Y)] = 0$, which is irreducible because, from Lemma 6, the polynomial $-X^4 + TY^3 + T(X\psi_2 + T\chi_2)$ is irreducible, with $\chi_2' = \chi_2 + l^2T^2$.

To within a change of affine coordinates, we can assume that the plane Z = lT is Z = 0, that the singular point on C is $P_0 = O = (1 : 0 : 0 : 0)$, and that one of the lines tangent to C through P_0 is Z = Y = 0 at the point A = (1 : -a : 0 : 0). These assumptions can be drawn in the light of the fact that $\phi_4 = -X^4 + T\phi_3$, and the coefficient of Y^3 in ϕ_3 is 1. In this chosen frame, the curve C is given by

$$\mathcal{C}: \{Z = 0 = -(X + aT)^2 X^2 + TY(bX^2 + cXY + Y^2 + dXT + eYT)\}$$

with $a, b, c, d, e \in k$.

Proposition 4. The normal quartic surface of \mathbf{P}^3

$$\mathcal{F}: Z^2 T^2 + \phi_4 = 0, \quad \phi_4 \in k[T, X, Y], with \ \mathcal{F}_{\infty} = 4\mathbf{r},$$

is almost-factorial if and only if, to within a suitable linear change of coordinates, it is

$$\mathcal{F}^*: Z^2 T^2 - X^4 + Y^3 T = 0.$$

 \mathcal{F}^* is 12-almost-factorial.

Proof. We can assume that $\mathbf{r} = Z_{\infty}Y_{\infty}$ and now $\phi_4 = -X^4 + T\phi_3$, where $\phi_3 = Y^3 + (X\phi_2 + T\chi_2)$, and $\psi_2, \chi_2 \in k[T, X, Y]$ are zero or homogeneous polynomials of degree 2. The coefficient of Y^3 can be assumed to be 1 (it cannot vanish otherwise the generic plane $X = \lambda T$ would intersect \mathcal{F} along the lines T = X = 0 counted at least twice, in which case \mathcal{F} would be singular in codimension 1). So, the hypotheses of Lemmas 6 and 7 hold, for which we can assume that

$$\mathcal{F}: Z^2 T^2 - (X + aT)^2 X^2 + TY(bX^2 + cXY + Y^2 + dXT + eYT) = 0.$$

Now, let us consider the rational transformation $\sigma: \mathbf{P}^3 \longrightarrow \mathbf{P}_2^3$

$$\sigma: (T_2: X_2: Y_2: Z_2) = (T^2: TX: TY: (ZT - X(X + aT)),$$

which has the following inverse transformation on $\sigma(\mathcal{F})$:

$$\sigma^{-1}: (T:X:Y:Z) = (T_2^2:T_2X_2:T_2Y_2:(Z_2T_2+X_2(X_2+aT_2)).$$

As a result,

$$\sigma^{-1} \circ \sigma : (T_2 : X_2 : Y_2 : Z_2) = (T_2^4 : T_2^3 X_2 : T_2^3 Y_2 : T_2^3 Z_2)).$$

From this, the factor of non regularity is $T_2 = 0$, which proves that σ is biregular on the affine part $\mathbf{P}_2^3 \cap \{T_2 \neq 0\}$. By means of σ , the surface \mathcal{F} will be transformed into

$$T_2^5 [T_2 Z_2^2 + 2a X_2 Z_2 T_2 + 2X_2^2 Z_2 + b X_2^2 Y_2 + c X_2 Y_2^2 + Y_2^3 + d X_2 Y_2 T_2 + e Y_2^2 T_2] = 0.$$

To within the factor T_2^5 , we thus find that the proper transform of \mathcal{F} is the cubic (monoid with a double point at $O_1 = (1:0:0:0)$).

$$\mathcal{F}_3: T_2(Z_2^2 + 2aX_2Z_2 + dX_2Y_2 + eY_2^2) + Y_2^3 + 2X_2^2Z_2 + bX_2^2Y_2 + cX_2Y_2^2 = 0.$$

 $Y_2^3 + 2X_2^2Z_2 + bX_2^2Y_2 + cX_2Y_2^2 = 0$ is an irreducible cubic cone that is singular along the line $\{X_2 = Y_2 = 0\}$ and intersects the quadric cone

$$\Gamma: Z_2^2 + 2aX_2Z_2 + dX_2Y_2 + eY_2^2 = 0,$$

along the line $\{Z_2 = Y_2 = 0\}$. As this line is irreducible, it is a settheoretic complete intersection of \mathcal{F}_3 . Then we can apply Proposition 1 to the surface \mathcal{F}_3 , which is therefore almost-factorial and it must be one of the three almost-factorial surfaces (monoids) classified by Stagnaro (see [13], Theorem on page 143). To within a suitable linear change of coordinates in \mathbf{P}^3 , these monoids are one of the following kinds:

(I) :
$$T_2(Y_2^2 + X_2Z_2) + X_2^3 = 0$$
,
(II) : $T_2(X_2Y_2) - Z_2^3 = 0$,
(III) : $T_2(X_2^2) + X_2Z_2^2 + Y_2^3 = 0$.

A priori, the following cases may occur:

(1) If Γ is irreducible $(4ea^2 - d^2 \neq 0)$, then \mathcal{F}_3 will be the surface (I) for which the six lines on \mathcal{F}_3 passing through O_1 must concide. This condition is met if the resultant polynomial, with respect to Z_2 (which is now $Z_{2\infty} \notin \Gamma$) between

$$Z_2^2 + 2aX_2Z_2 + dX_2Y_2 + eY_2^2$$
 and $Y_2^3 + 2X_2^2Z_2 + X_2Y_2(bX_2 + cY_2)$,

is a sixth power of one linear form in X_2 , Y_2 . But such a resultant is

$$\begin{split} Y_2[4(ab-d)X_2^5 + (4ac-b^2-4e)X_2^4Y_2 \\ &+ 2(2a-bc)X_2^3Y_2^2 - (c^2+2b)X_2^2Y_2^3 - 2cX_2Y_2^4 - Y_2^5], \end{split}$$

which would consequently be divisible by Y_2^6 . This implies that

$$c=b=a=e=d=0,$$

and this contradicts $4a^2e - d^2 \neq 0$. So \mathcal{F} cannot be transformed into the \mathcal{F}_3 of the kind (I).

(2) The cone Γ is reducible (i.e., $d^2 = 4ea^2$) in two distinct or coincident planes. In the first case, \mathcal{F}_3 is of the kind (II) and both of the two component planes of the cone must intersect the monoid along three coincident lines. The resultant must then be divisible first by Y_2^3 , and then by the third power of a linear form in X_2 , Y_2 . This implies that the resultant is Y_2^6 , so b = c = 0. Γ is therefore the plane $Z_2 = 0$ counted twice. This means that the surface is of the kind (III), with a = d = e = 0, and the plane $Z_2 = 0$ must intersect \mathcal{F}_3 along a line counted three times. We have $\mathcal{F}_3 : T_2Z_2^2 + Y_2^3 + 2X_2^2Z_2 = 0$. To within a change of coordinates in \mathbf{P}^3 , the assigned surfaces

$$\mathcal{F}: Z^2 T^2 + \phi_4 = 0, \quad \phi_4 \in k[T, X, Y], \text{ with } \mathcal{F}_{\infty} = 4\mathbf{r}$$

are

$$\mathcal{F}^* : Z^2 T^2 - X^4 + T Y^3 = 0.$$

This demonstrates Proposition 4. We note that the point A = (1 : -a : 0 : 0) becomes O, and C has a triple point at O. \mathcal{F}^* can be parametrized on the plane \mathbf{P}^2 by

$$(T:X:Y:Z) = (W^{3}(W^{2} - U^{2})^{2}: W^{2}V^{3}(W^{2} - U^{2}): WV^{4}(W^{2} - U^{2}): V^{6}U).$$

The inverse correspondence on \mathcal{F}^* is $(W:U:V) = (X^2:TZ:XY)$ with the factor of non-regularity $M = X^6 Y^6 T$.

It is easy to see that the surface \mathcal{F}^* is 12-almost-factorial. The surface \mathcal{F}^* was investigated in [6], Example 1, page 290.

Remark 2. In the above-mentioned paper [6], it had been shown how computing a surface \mathcal{G} , whose complete intersection with \mathcal{F} is \mathcal{C} with multiplicity $\mu = \deg(\mathcal{F}) \deg(\mathcal{G}) / \deg(\mathcal{C})$ for every irreducible curve \mathcal{C} on \mathcal{F} , and some examples were given.

Proposition 5. Let $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$, be a quartic surface on \mathbf{P}^3 with $\mathcal{F} \cdot \{T = 0\} = \mathcal{F}_{\infty} = 4\mathbf{r}$, and $\Delta = \phi_2^2 - \phi_4$ is irreducible. \mathcal{F} is almost-factorial if and only if \mathcal{F} can be written in the form

$$\mathcal{F}(2): (ZT + aX^2)^2 - X^4 + Y^3T = 0, \quad a^2 \neq 1.$$

 \mathcal{F} will be 12-almost-factorial.

Proof. We have $\mathcal{F} \cdot \{T = 0\} = 4\mathbf{r}$, so we can write

$$\phi_4 = X^4 + T\phi_3(T, X, Y), \quad \phi_3 \in k[T, X, Y].$$

Let $\phi_2 = aX^2 + bXY + cY^2 + T(dX + eY + fT)$, a, b, c, d, e, $f \in k$.

From the birational transformation (4), the proper transform of \mathcal{F} by τ is $\mathcal{H}: Z_1^2 T_1^2 - \Delta(T_1, X_1, Y_1) = 0$, where Δ is irreducible. So, we can apply Proposition 4 to \mathcal{H} . In particular, in a suitable coordinates' frame of \mathbf{P}_1^3 , we see that $\Delta' = \phi_2(T_1, X_1, Y_1)^2 - X_1^4 - T\phi_3(T_1, X_1, Y_1)$ can be written in the form of $-X_1^4 + Y_1^3 T_1$. Now Y_1^4 and $X_1^2 Y_1^2$ do not appear in Δ' , so it necessarily is b = c = 0, and therefore, we have $\phi_2 = aX^2 + T(dX + eY + fT)$, d, e, $f \in k$. By replacing the coordinates in \mathbf{P}^3 with $T'=T, \quad X'=X, \quad Y'=Y, \quad Z'=Z+dX+eY+fT,$

we obtain surfaces of the kind

$$(Z'T' + aX'^2)^2 - X'^4 + Y'^3T' = 0, \quad a^2 \neq 1.$$

We can thus conclude that, to within a change of coordinates, when $\mathcal{F} \cdot \{T = 0\} = \mathcal{F}_{\infty} = 4\mathbf{r}$ and $\Delta = \phi_2^2 - \phi_4$ is irreducible, the only quartic almost-factorial surfaces in \mathbf{P}^3 are of the kind

$$\mathcal{F}(2): (ZT + aX^2)^2 - X^4 + Y^3T = 0, \quad a^2 \neq 1.$$

 $\mathcal{F}(2)$ are 12-almost-factorial.

5.2. The surfaces \mathcal{F} with $\mathcal{F}_{\infty} = 4r$, Δ reducible, T not factor of Δ

Proposition 6. Let $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$, be a quartic surface in \mathbf{P}^3 with $\mathcal{F} \cdot \{T = 0\} = \mathcal{F}_{\infty} = 4\mathbf{r}$ and $\Delta = \phi_2^2 - \phi_4$ reducible, but Tdoes not divide Δ . In a suitable coordinates' frame, \mathcal{F} is almost-factorial if and only if it is of the kind

$$\mathcal{F}(3): (ZT + aX^2 + Y^2 + T(a_1X + b_1Y))^2$$

$$-[(a-1)X^{2} + Y^{2} + 2T(dX + eY)][(a+1)X^{2} + Y^{2} + 2T(fX + gY)] = 0,$$

where $a^2 \neq 1$, $(e, g) \neq (0, 0)$, with $(a + f^2/g^2)^2 = 1$, and def $g \neq 0$. $\mathcal{F}(3)$ is 4-almost-factorial.

Proof. Let $\phi_2 = aX^2 + 2bXY + cY^2 + T\phi_1$, and now $\phi_4 = X^4 + T\phi_3$, with $\phi_1, \phi_3 \in k[T, X, Y]$ suitable polynomials vanishing or of degrees 1 and 3, respectively. If $\phi_1 = 0 = \phi_3$, \mathcal{F} has two tacnodal points and we can apply Lemma 3 and Proposition 2 to \mathcal{F} . Such a surface is not almostfactorial. Then we can assume that (ϕ_1, ϕ_3) does not vanish and, as done in Lemma 3, (5), we can assume that $c = 1, b = 0, a^2 \neq 1$. Let $\phi_1 = a_1X + b_1Y + c_1T$. Thus

$$\Delta(T, X, Y) = \phi_2^2 - \phi_4 = (aX^2 + Y^2 + T\phi_1)^2 - X^4 - T\phi_3,$$

and, since Δ is reducible but *T* does not divide Δ every factor

$$(aX^{2} + Y^{2})^{2} - X^{4} = [(a-1)X^{2} + Y^{2}][(a+1)X^{2} + Y^{2}],$$

is different from zero. So, it must be that $\Delta = \psi_2 \chi_2$ with non-vanishing suitable polynomials of k[T, X, Y]. Here we can assume that $O_1 = (1 : 0$ $: 0 : 0) \in \mathcal{F}$ and at O_1 satisfies $\phi_1 = \psi_2 = \chi_2 = 0$ (possibly by substituting X, Y with suitable $X' = X + uT, Y' = Y + vT, u, v \in k$). So, we can suppose $c_1 = 0$, so $\phi_1 = a_1X + b_1Y$, and

$$\psi_2 = (a-1)X^2 + Y^2 + 2T(dX + eY),$$

$$\chi_2 = (a+1)X^2 + Y^2 + 2T(fX + gY).$$

The equation for \mathcal{F} can be written in the form: $(ZT + \phi_2)^2 = \psi_2 \chi_2$. We can obtain a parametrization of \mathcal{F} on \mathbf{P}^2 by assuming first

$$\frac{V}{W} = \frac{ZT + \phi_2}{\psi_2}, \quad \frac{U}{W} = \frac{Y}{X},$$

and then, from the relation

$$\frac{V^2}{W^2} = \frac{(ZT + \phi_2)^2}{\psi_2^2} = \frac{\chi_2}{\psi_2},$$

we shall have $V^2 \psi_2 = W^2 \chi_2$. So it must be

$$V^{2}[(a-1)X^{2} + \frac{U^{2}}{W^{2}}X^{2} + 2T\frac{U}{W}(dX + e\frac{U}{W}X]$$
$$= W^{2}[(a+1)X^{2} + \frac{U^{2}}{W^{2}}X^{2} + 2T\frac{U}{W}(fX + g\frac{U}{W}X)].$$

Omitting the factor *X* from the relation above, we shall have

$$\frac{X}{T} = \frac{WN}{D}$$
 and $\frac{Y}{T} = \frac{UN}{D}$,

where

$$N = 2[W^{2}(fW + gU) - V^{2}(dW + eU)],$$
(5)

$$D = V^{2}[(a-1)W^{2} + U^{2}] - W^{2}[(1+a)W^{2} + U^{2}].$$
 (6)

Finally, from $W(ZT + \phi_2) = V\psi_2$, we first have

$$ZT = \frac{V\psi_2(T, X, Y) - W\phi_2(T, X, Y)}{W},$$
(7)

 $\phi_2(T,\,X,\,Y)\,$ and $\,\psi_2(T,\,X,\,Y)\,$ being homogeneous of degree 2, we shall have

$$\frac{T^2}{D^2} \phi_2(\frac{D}{T} T, \frac{D}{T} X, \frac{D}{T} Y) = \frac{T^2}{D^2} \phi_2(D, WN, UN),$$
$$\frac{T^2}{D^2} \psi_2(\frac{D}{T} T, \frac{D}{T} X, \frac{D}{T} Y) = \frac{T^2}{D^2} \psi_2(D, WN, UN).$$

Finally,

$$\frac{Z}{T} = \frac{P}{WD^2},$$

where we have put

$$P = V\psi_2(D, WN, UN) - W\phi_2(D, WN, UN) \in k[U, V, W],$$
(8)

a polynomial of degree 9. Only if it is supposed $N \neq 0$, i.e., $(d, e, f, g) \neq (0, 0, 0, 0)$, we obtain a parametrization for the surface \mathcal{F} given by

$$\frac{X}{T} = \frac{W^2 ND}{WD^2}, \quad \frac{Y}{T} = \frac{WUND}{WD^2}, \quad \frac{Z}{T} = \frac{P}{WD^2},$$

and this is a restriction to $\, {\mathcal F} \,$ of the rational map $\, \sigma : {\mathbf P}^2 \longrightarrow {\mathbf P}^3 \,$

$$(T: X: Y: Z) = (WD^2: W^2ND: WUND: P).$$

The rational transformation $\mathbf{P}^3 \longrightarrow \mathbf{P}^2$

$$(W:U:V) = (X\psi_2:Y\psi_2:X(ZT + \phi_2)),$$

induces one birational transformation inverse of σ on \mathcal{F} . When we substitute, mod \mathcal{F} , respectively,

W, U, V with
$$X\psi_2$$
, $Y\psi_2$, $X(ZT + \phi_2)$,

we have, of course $W = X\psi_2$, $U = Y\psi_2$, and from (5) and (6),

$$D = TX^2 \psi_2^3 R, \quad N = TX^2 \psi_2^2 R, \tag{9}$$

where $R = 2(dX + eY)[(a + 1)X^2 + Y^2] - 2(fX + gY)[(a - 1)X^2 + Y^2].$

From (7), (8), and (9) results

$$P = V\psi_2(D, WN, UN) - W\phi_2(D, WN, UN)$$
$$= V\psi_2(TX^2\psi_2^3R, X^3\psi_2^3R, YX^2\psi_2^3R) - W\psi_2(TX^2\psi_2^3R, X^3\psi_2^3R, YX^2\psi_2^3R)$$
$$= X^4\psi_2^6R^2[V\psi_2(T, X, Y) - W\phi_2(T, X, Y)] = X^4\psi_2^6R^2ZTW = ZTX^5\psi_2^7R^2.$$

Therefore, we have for T, X, Y, Z, respectively,

$$T(TX^5\psi_2^7R^2), \quad X(TX^5\psi_2^7R^2), \quad Y(TX^5\psi_2^7R^2), \quad Z(TX^5\psi_2^7R^2).$$

Thus, the factor of non-regularity of $\sigma, \mbox{ mod } \mathcal{F},$ is

$$M = TX^5 \psi_2^7 R^2,$$

where $R = 2(dX + eY)[(a + 1)X^2 + Y^2] - 2(fX + gY)[(a - 1)X^2 + Y^2].$

We note that *R* splits into three linear forms in *X*, *Y*, and *R* is just the resultant of ψ_2 and χ_2 with respect to *T*.

Now the surface M = 0 cuts the following curves on \mathcal{F} :

- the section of \mathcal{F} with the quadric $\psi_2 = 0$; this is the irreducible quartic $C_4 : \psi_2 = ZT + \phi_2 = 0$ (counted twice), if ψ_2 is irreducible; otherwise, if ψ_2 is reducible, we obtain two conics (counted twice), each of which is the intersection of $ZT + \phi_2 = 0$ with a plane component of $\psi_2 = 0$;

- T = 0 gives the line $\mathbf{r} : X = T = 0$ on \mathcal{F} counted 4 times;

- the section between \mathcal{F} and X = 0 splits into the line **r** and the irreducible (rational) plane cubic

$$\mathcal{C}_3: \{X = 0 = Z^2T + 2ZY(Y + b_1T) + 2Y^3(b_1 - e - g) + Y^2T(b_1^2 - 4eg)\}.$$

Now **r** is a set-theoretic complete intersection of \mathcal{F} with T = 0 and also C_3 because on \mathcal{F} , we have

$$\operatorname{div}_{\mathcal{F}}(-x^{4}/t) = 4\mathcal{C}_{3} + 4\mathbf{r} - 4\mathbf{r} = 4\mathcal{C}_{3}.$$

If we set $G = Z^2T + 2Z\phi_2 + \phi_3$ is $\operatorname{div}_{\mathcal{F}}(g) = 4\mathcal{C}_3$ and therefore $\mathcal{G} : \{G = 0\}$ intersects \mathcal{F} along $4\mathcal{C}_3$.

- R = 0 gives three planes passing through the line X = Y = 0, each of them, different from X = 0, Y = tX intersects \mathcal{F} along a reducible quartic if and only if, for $Y = tX \Delta$ becomes a square $\overline{\Delta} = \overline{\chi_2 \psi_2} = A^2 X^4$, with $A \in k$. We are interested in the planes Y = tX over which it results $\overline{R} = 0$ and so

$$A^2X^4$$

$$= 4(d-et)(f-gt)X^{2}T^{2} + 4(f-gt)(a-1+t^{2})X^{3}T + [(a+t^{2})^{2}-1]X^{4}.$$

When
$$t = \frac{f}{g}$$
 and $A^2 = \left(a + \frac{f^2}{g^2}\right)^2 - 1 \neq 0$, $\overline{R} = 0$ implies $\frac{f}{g} = \frac{d}{e}$. The

plane fX + gY = 0 intersects \mathcal{F} according the two different conics

$$\{fX + gY = 0 = ZT + (a_1 - b_1 \frac{f}{g})XT + (\pm A + a + \frac{f^2}{g^2})X^2\}.$$

Arguing similarly the final part of proof of Proposition 3, one shows that these conics can not be complete intersection on \mathcal{F} .

When
$$t = \frac{f}{g} = \frac{d}{e}$$
 and $A^2 = (a + \frac{f^2}{g^2})^2 - 1 = 0$, i.e., $a = \pm 1 - \frac{f^2}{g^2}$, we

find the two double conics

$$2\{\psi_2 = 0 = ZT + \phi_2\}, \text{ and } 2\{\chi_2 = 0 = ZT + \phi_2\}.$$

The plane dX + eY = 0, if $fe \neq gd$, intersects \mathcal{F} according complete intersections: A double conic if $a = 1 - \frac{d^2}{e^2}$, or an irreducible quartic.

The same is for the plane fX + gY = 0, if $fe \neq gd$. It intersects \mathcal{F} according a double conic if $a = -1 - \frac{f^2}{g^2}$, or an irreducible quartic.

From Proposition 1, \mathcal{F} is almost-factorial if and only if $\left(a + \frac{f^2}{g^2}\right)^2 = 1$,

with def $g \neq 0$. \mathcal{F} results 4-almost-factorial.

Let us denote the said almost-factorial surface with

$$\mathcal{F}(3): (ZT + aX^2 + Y^2 + T(a_1X + b_1Y))^2$$
$$- [(a-1)X^2 + Y^2 + 2T(dX + eY)][(a+1)X^2 + Y^2 + 2T(fX + gY)] = 0,$$

with $(a + \frac{f^2}{g^2})^2 = 1$, def $g \neq 0$.

5.3. Quartic surfaces \mathcal{F} with $\mathcal{F}_{\infty} = 4r$ and with T dividing Δ

We can write $\Delta = T\psi_3(T, X, Y)$, and not $\Delta = T^2\psi_2(T, X, Y)$, because the surface

$$(ZT + \phi_2)^2 - T^2 \psi_2(T, X, Y) = 0,$$

would be singular along $\{T = \phi_2 = 0\}$.

In the case under investigation, we obtain, by τ in (4), from the surface $\mathcal{F} : (ZT + \phi_2)^2 - T\psi_3 = 0$ the cubic surface (double plane)

$$\mathcal{H}: Z_1^2 T_1 - \psi_3(T_1, X_1, Y_1) = 0.$$

If \mathcal{F} is assumed to be almost-factorial, so is $\mathcal{F} \cap \{T \neq 0\}$, and the affine part $\mathcal{H}_a = \mathcal{H} \cap \{T_1 \neq 0\}$ must therefore be almost-factorial. Conversely, if \mathcal{H}_a is almost-factorial, so is $\mathcal{F} \cap \{T \neq 0\}$ because the transformation τ is biregular on $\mathbf{P}^3 \cap \{T \neq 0\}$, and being $\mathcal{F}_{\infty} = 4\mathbf{r}, \mathcal{F}$ is also almost-factorial.

We examine all the possibilities in the following proposition:

Proposition 7. Let $\mathcal{F} : Z^2T^2 + 2ZT\phi_2 + \phi_4 = 0$, be a normal surface in \mathbf{P}^3 , with $\mathcal{F}_{\infty} = 4\mathbf{r}$. If T divides $\Delta(T, X, Y) = \phi_2^2 - \phi_4$, \mathcal{F} is almostfactorial if and only if, to within a linear change of affine coordinates in $\mathbf{P}^3 - \{T = 0\}, \mathcal{F}$ is one of the following:

 $\mathcal{F}(4) \quad : \quad [ZT + (aX + bY)^2]^2 - TXY(X + Y) = 0, \quad 0 \neq a \neq b \neq 0;$

$$\mathcal{F}(5) \quad : \quad [ZT + (aX + bY)^2]^2 - TXY(X + T) = 0, \quad a \neq 0, \ b \neq 0;$$

$$\mathcal{F}(6) \quad : \quad \left[ZT + (aX + bY)^2\right]^2 - TX(XY + T^2) = 0, \quad a \neq 0, \ b \neq 0;$$

$$\mathcal{F}(7) \quad : \quad [ZT + (aX + bY)^2]^2 - TX(TY + X^2) = 0, \quad b \neq 0;$$

$$\mathcal{F}(8) \quad : \quad \left[ZT + (aX + bY)^2\right]^2 - T(T^2Y + X^2) = 0, \quad b \neq 0;$$

$$\mathcal{F}(9) \quad : \quad \left[ZT + (aX + bY)^2\right]^2 - T(TY^2 + X^3) = 0, \quad b \neq 0.$$

The surface $\mathcal{F}(9)$ is 12-almost-factorial; all the others are 4-almost-factorial.

Proof. As T is a factor of Δ (reducible), in every case it must hold that

$$\mathcal{F}_{\infty}: \{T = \phi_4 = 0\} = \{T = \phi_2^2 - \Delta = 0\} = 2\{T = \phi_2 = 0\} = 4\mathbf{r},$$

with **r** a suitable line, that we can assume $\mathbf{r} : \{T = aX + bY = 0\}$, with *a*, *b* satisfying the condition to avoid \mathcal{F} is singular along **r**. So we have

$$\phi_2 = (aX + bY)^2 + T\phi_1, \quad \Delta = T\psi_3,$$

 Δ being reducible we have to examine the case in which the almostfactorial surface \mathcal{F} will be transformed into the double plane

$$\mathcal{H}: Z_1^2 T_1 - \psi_3(T_1, X_1, Y_1) = 0.$$

The exceptional divisor of τ is $\{T_1 = \psi_3(T_1, X_1, Y_1) = 0\}$. This divisor splits into straight lines passing through Z_{∞} and its affine part $\mathcal{H}_a = \mathcal{H} \cap \{T_1 \neq 0\}$ must be almost-factorial. The affine cubic surface \mathcal{H}_a is then among those listed in [4]. We are interested only in those that have the projective closure with \mathcal{H}_{∞} splitting into lines passing through Z_{∞} :

- (1) they are three distinct lines;
- (2) two of the three lines coincide; or
- (3) all three lines coincide.

The double cubic planes with the above said property are the following:

REMO GATTAZZO

For **case 1** in the list linked to [4], we have only the surface n.14, and by changing (X_1, Y_1, Z_1) with $(-X_1, -Y_1, Z_1)$ is $\mathcal{H}_4 : Z_1^2 T_1 - X_1 Y_1$ $(X_1 + Y_1) = 0$; this corresponds to the quartic surface

$$\mathcal{F}(4): [ZT + (aX + bY)^2]^2 - TXY(X + Y) = 0, \quad 0 \neq a \neq b \neq 0.$$

For case 2, there are two surfaces in the list

- n.45, assuming t = -1 and exchanging (X, Y, Z) with $(X_1, Z_1, -Y_1)$, we have \mathcal{H}_5 : $Z_1^2T_1 - X_1Y_1(X_1 + T_1) = 0$, and

- n.64, exchanging (X_1, Y_1, Z_1) with $(-X_1, Z_1, -Y_1)$, we have $\mathcal{H}_6: Z_1^2 T_1 - X_1 (X_1 Y_1 + T_1^2) = 0$. The corresponding surfaces are

$$\mathcal{F}(5): [ZT + (aX + bY)^2]^2 - TXY(X + T) = 0, \quad a \neq 0, \ b \neq 0,$$
$$\mathcal{F}(6): [ZT + (aX + bY)^2]^2 - TX(XY + T^2) = 0, \quad a \neq 0, \ b \neq 0.$$

Finally, for **case 3**, we have the surfaces \mathcal{H} in \mathbf{P}_1^3 that are almostfactorial because $\mathcal{H} \cdot \{T_1 = 0\}$ is irreducible. We thus find the surfaces n.72, n.76, and n.78. For the surface n.72, exchanging the coordinates (X_1, Y_1, Z_1) with $(-X_1, Z_1, Y_1)$, we obtain $\mathcal{H}_7 : Z_1^2 T_1 - X_1 (T_1 Y_1 + X_1^2) = 0$, corresponding to the quartic

$$\mathcal{F}(7): [ZT + (aX + bY)^2]^2 - TX(YT + X^2) = 0, \quad b \neq 0.$$

For n.78, exchanging (X_1, Y_1, Z_1) with $(-X_1, Z_1, -Y_1)$, we obtain

 $\mathcal{H}_8\,: Z_1^2 T_1 - (T_1^2 Y_1 + X_1^3\,) = 0,$ corresponding to

$$\mathcal{F}(8): \left[ZT + (aX + bY)^2\right]^2 - T(YT^2 + X^3) = 0, \quad b \neq 0.$$

For n.76, exchanging (X_1, Y_1, Z_1) with $(Z_1 - Y_1, -X_1, Z_1 + Y_1)$, we have $\mathcal{H}_9: Z_1^2 T_1 - (T_1 Y_1^2 + X_1^3) = 0$, which gives to the quartic

$$\mathcal{F}(9): [ZT + (aX + bY)^2]^2 - T(Y^2T + X^3) = 0, \quad b \neq 0.$$

Now we need to examine each surface $\mathcal{F}(i)$, $4 \le i \le 9$, to obtain its suitable parametrization on \mathbf{P}^2 and the factor of non-regularity M. On each surface \mathcal{F}_i , $4 \le i \le 8$ every factor of M defines a plane that intersects \mathcal{F}_i according to either a conic $\{ZT + (aX + bY)^2 = 0\}$ counted twice or the line $\{aX + bY = 0\}$ with multiplicity 4. According to Proposition 1, all such surfaces are 4-almost-factorial.

For the last surface $\mathcal{F}(9)$, the factor of non-regularity is T^5X^6 . We have

$$\mathcal{F}(9) \cdot \{T = 0\} = 4\mathbf{r}, \quad \mathcal{F}(9) \cdot \{X = 0\} = \mathcal{C}_1 + \mathcal{C}_2,$$

where $C_1 : \{X = 0 = ZT + b^2Y^2 - YT\}, C_2 : \{X = 0 = ZT + b^2Y^2 + YT\}.$ Now it is

$$\mathcal{F}(9) \cap \{ZT + (aX + bY)^2 - YT = 0\} = \begin{cases} ZT + (aX + bY)^2 = YT \\ TX^3 = 0 \end{cases}$$

$$= \{T = 0 = (aX + bY)^2\} + \{X^3 = 0 = \{ZT + (aX + bY)^2 - YT = 0\} = 2\mathbf{r} + 3\mathcal{C}_1.$$

On $\mathcal{F}(9)$, we consider the divisor of

$$\frac{(zt + (ax + by)^2 - yt)^2}{t} = \frac{(zt + (ax + by)^2)^2 - 2ty(zt + (ax + by)^2) + t^2y^2}{t}$$
$$= x^3 - 2y(zt + (ax + by)^2) + 2ty^2.$$

The cubic surface $S: X^3 - 2Y(ZT + (aX + bY)^2) + 2TY^2 = 0$ gives

$$\mathcal{F}(9) \cdot \mathcal{S} = 4\mathbf{r} + 6\mathcal{C}_1 - 4\mathbf{r} = 6\mathcal{C}_1.$$

Then we consider $\mathcal{F}(9) \cap \{ZT + (aX + bY)^2 + YT = 0\}$. With a similar calculation, we find

$$\mathcal{F}(9) \cdot \{X^3 + 2Y(ZT + (aX + bY)^2) + 2TY^2 = 0\} = 6\mathcal{C}_2.$$

From Proposition 1, the surface $\mathcal{F}(9)$ is almost-factorial, and precisely is $\nu = 12$.

All these results are summarized in the following tables; $\nu = index$ of almost-factoriality, M = factor of non-regularity for the parametrization of the surface.

Equation of the surface	Parametrization τ	τ^{-1}	μ
$\mathcal{F}(4):$ $[TZ + (aX + bY)^2]^2$ $- TXY(X + Y) = 0$ $0 \neq a \neq b \neq 0$	$T : W^{2}U^{2}(W + U)^{2}$ $X : WU^{2}V^{2}(W + U)$ $Y : W^{2}UV^{2}(W + U)$ $Z : WUV^{2}(W + U) - V^{4}[aU + bW]^{2}$	$W : TY$ $U : TX$ $V : ZT + (aX + bY)^{2}$ $M = T^{5}X^{2}Y^{2}(X + Y)^{2}$	4
$\mathcal{F}(5):$ $[TZ + (aX + bY)^2]^2$ $- TXY(X + T) = 0$ $a \neq 0, b \neq 0$	$T : U^{2}W^{2}(W - U)^{2}$ $X : W^{2}U^{3}(W - U)$ $Y : WUV^{2}(W - U)^{2}$ $Z : W^{2}U^{2}V(W - U)$ $- [aWU^{2} + bV^{2}(W - U)]^{2}$	$W: T(T + X)$ $U: TX$ $V: ZT + (aX + bY)^2$ $M = T^7 X^2 (X + T)^2$	4
$\mathcal{F}(6):$ $[TZ + (aX + bY)^2]^2$ $- TX(XY + T^2) = 0$ $a \neq 0, b \neq 0$	$T: W^{2}U^{4}$ $X: WU^{5}$ $Y: W^{2}U^{2}(V^{2} - WU)$ $Z: WVU^{4} - [aU^{3} + bW(V^{2} - WU)]^{2}$	$W: T^{2}$ $U: TX$ $V: ZT + (aX + bY)^{2}$ $M = T^{7}X^{4}$	4

Almost-factorial quartic with \mathcal{F}_{∞} = 4r and T dividing Δ

$\mathcal{F}(7):$ $[TZ + (aX + bY)^2]^2$ $- TX(TY + X^2) = 0$ $b \neq 0$	$T : W^{6}$ $X : W^{4}(U^{2} - WV)$ $Y : W^{3}V(U^{2} - WV)$ $Z : W^{3}U(U^{2} - WV) - (U^{2} - WV)^{2}$	$W : TX$ $U : TZ + (aX + bY)^{2}$ $V : TY$ $M = T^{5}X^{6}$	4
$\mathcal{F}(8):$ $[TZ + (aX + bY)^2]^2$ $- T(T^2Y + X^3) = 0$ $b \neq 0$	$T : W^{6}$ $X : W^{5}U$ $Y : W^{3}(WV^{2} - U^{3})$ $Z : W^{5}V - [aW^{2}U + b(WV^{2} - U^{3})]^{2}$	$W: T^{2}$ $U: TX$ $V: ZT + (aX + bY)^{2}$ $M = T^{11}$	4
$\mathcal{F}(9):$ $[TZ + (aX + bY)^2]^2$ $- T(TY^2 + X^3) = 0$ $b \neq 0$	$T: W^{6}$ $X: W^{4}(U^{2} - V^{2})$ $Y: W^{3}V(U^{2} - V^{2})$ $Z: W^{3}U(U^{2} - V^{2}) - (U^{2} - V^{2})^{2}(aW + bV)^{2}$	$W : TX$ $U : ZT + (aX + bY)^{2}$ $V : TY$ $M = T^{5}X^{6}$	12

References

- [1] A. Andreotti and P. Salmon, Anelli con unica decomponibilità in fattori primi ed un problema di intersezioni complete, Monatsh. Math. 61 (1957), 97-146.
- [2] M. C. Beltrametti and F. Odetti, On the projectively almost-factorial varieties, Ann. Mat. Pura e Appl., Serie IV 103 (1977), 255-263.
- [3] P. Blass and J. Lang, Zariski Surfaces and Differential Equations in Characteristic p > 0, Dekker, 1987.
- [4] P. C. Craighero, R. Gattazzo and M. C. Ronconi, Superficie cubiche di A_C^3 a curve sottoinsieme intersezione completa, Annali di Matematica Pura e Applicata, Serie IV 129 (1981), 81-130.
- [5] P. Deligne and N. Katz, SGA VII, Part II, Lectures Notes in Mathematics, 340 (1973).

REMO GATTAZZO

- [6] R. Gattazzo, A criterion for a rational projectively normal variety to be almost factorial, Rend. Semin. Mat. Univ. Padova 79 (1988), 281-296.
- [7] R. Gattazzo, Contact between algebraic surfaces along a straight line: Suitable algorithm, Journal of Pure and Appl. Math.: Advances and Applications 10(2) (2013), 227-242.
- [8] W. Gröbner, Sopra un teorema di Severi, Rend. di Matematica, Serie 5 11 (1952), 217-223.
- [9] R. Hartshorne, Algebraic Geometry, Springer, 1977.
- [10] D. Mumford, Algebraic Geometry I Complex Projective Geometry, Springer, 1976.
- [11] M. C. Ronconi, Monoidi del quarto ordine di \mathbf{P}_k^3 a curve sottoinsieme intersezione completa, Rend. Semin. Mat. Univ. Padova 72 (1984), 49-68.
- [12] M. C. Ronconi, Sui monoidi di ordine quattro di P³ singolari in codimensione uno, Rend. Semin. Mat. Univ. Padova 74 (1985), 23-37.
- [13] E. Stagnaro, Le superficie cubiche di \mathbf{P}^3 a curve sottoinsieme intersezione completa, Atti Acc. Ligure Sc. Lettere 31 (1974), 138-148.
- [14] E. Stagnaro, Su alcune generalizzazioni della nozione di dominio fattoriale, Annali Univ. Ferrara, Sez.VII, Sc. Mat. 19 (1974), 157-179.

200