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Abstract 

The behaviour of birational transformations between particular surfaces in 3P  
and almost-factoriality are investigated. Using a suitable parametrization on 

2P  of the quartic surfaces with a tacnodal point, all almost-factorial surfaces of 
this kind can be classified. We prove that there are nine classes of such surfaces 

,F  and for each of them a possible equation is written and its index of almost-

factoriality ν  is computed. There are surfaces F  with .12,8,4=ν  For each 

irreducible algebraic curve ,FC ⊂  we outline how to construct a surface G  

such that ,CGF µ=⋅  with .ν≤µ  

1. Introduction 

There are classes of algebraic surfaces 3P⊂F  that have the 
following property: For every algebraic curve ,FC ⊂  there is an 
algebraic surface S  such that ,CSF =∩  or, more precisely, such that 

,CSF µ=⋅  where µ  is the multiplicity ( )FSC ∩,I=µ  of intersection 
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between F  and S  along .C  Such a surface F  is called a set-theoretic 
complete intersection surface; and if F  is non-singular in codimension 1, 
then it is called almost-factorial (factorial if 1=µ ). 

We know that the index of almost-factoriality of F  is the integer 
number ν  such that, for every reduced and irreducible curve ,FC ⊂  
there is a surface S  with the property that ,CFS µ=⋅  where .ν≤µ  In 

this case, we say that F  is .-- factorialalmostν  

It is well known that the multiplicity of intersection µ  between two 

surfaces F  and S  along a reduced and irreducible curve C  can be 

computed by considering their affine parts in a suitable affine space 3A  

in ,3P  such that 3: A∩CCa  is a curve again. If one of such surfaces    

F  is normal, the following valuation can be used. Let ,0: =FaF  

,0: =GaG  and aC  be the affine parts of ,, GF  and ,C                         

with [ ].,,, ZYXGF k∈  Let [ ] [ ] ( ) [ ]zyxFZYXa ,,,, kkk ==F  and 

( )aK Fk=  be the quotient field of [ ],Fk  where gzyx ,,,  denote the 

canonical projections of the polynomials GZYX ,,,  on [ ].aFk  Let p be 

the prime ideal of aC  in [ ],aFk  and v be the valuation centered at p of 

the local ring D.V.R. [ ] .paFk  It will defined ( ).gv=µ  

Many classes of almost-factorial surfaces in 3P  are well known. It is 
worth recalling them here. 

The planes are factorial. Only the quadrics 2F  with a unique double 

point (cones) are 2-almost-factorial. Among the cubic surfaces ,3F  there 

are only three families of almost-factorial surfaces 3
3 P⊂F  (see [13]). 

Every irreducible quadric cone or cylinder in 3A  is 2-almost-factorial, 

and every quadric paraboloid in 3A  is factorial. For the affine cubic 

surfaces ,3A⊂F  there are 82 families of factorial or almost-factorial 
surfaces (see [4]). 
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For quartic surfaces ,3
4 P⊂F  we know that the “generic” non-

singular surface is factorial (according to Nöther’s theorem generalized 
first by Gröbner; Andreotti and Salmon; and later by Deligne, see [8], [1], 

[5]), and 33 families of almost-factorial quartic monoids in 3P  have been 
described (see [11], [12]). 

The normal quartic, which is a Zariski’s surface 4: GZ p
p =Z  

( ) ,, 3
kA⊂YX  where k  is an algebraically closed field of characteristic 

0>p  and 4G  is a polynomial of degree ,4≤  was examined particularly 

in a book by Lang (see [3]), in which (pages 150-171) the author tackles 
the factoriality or almost-factoriality of these surfaces. 

Biregular birational transformations between algebraic varieties are 
known to preserve their almost-factoriality (see [2]). A criterion has been 
given in [6] for the almost-factoriality of V when a birational 

transformation of nP  is encountered in a projectively normal variety V. 

To the best of our knowledge, nobody knows whether any quartic 

surfaces in 3P  with only double points on them are factorial or almost-
factorial. 

The aim of this paper was to exhaustively answer the question of 

which normal quartic surfaces in 3P  with a tacnodal point on them are 
almost-factorial. 

All the almost-factorial quartic surfaces in 3P  can be placed in 9 
classes to within a linear change of coordinates. Using suitable equations 
for these surfaces ,F  we adopt a constructive process to obtain a surface 

G  such that for every curve C  on ,F  we shall have .CGF =∩  

To solve the proposed problem, it is essential to analyze the 

birational transformations of the surfaces in .3P  In the following 
paragraphs, k  denotes an algebraically closed field of characteristic 
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,0=p  and 3A  and 3P  are the affine and projective spaces on k  of 

dimension 3. A point ( ) 3,, A∈cba  will also be identified with ( ba ::1  

) .: 3P∈c  

2. Almost-Factoriality of Surfaces in 3P  and 
Birational Transformations 

Let ( )ZYXTFF ,,,=  and ( )1111 ,,, ZYXTGG =  be irreducible 

homogeneous polynomials, and the surfaces 30: P⊂=FF  and  
3
10: P⊂=GG  be non-singular in codimension 1. Then, let be 

[ ] [ ] ( ) [ ] [ ] ( ).,,,,,,, 1111 GGFF JZYXTJZYXT kkkk ==  

These rings can be regarded as the rings of regular functions of the affine 
cones over F  and .G  They are both integral closed rings because F  and 

G  are non-singular in codim 1. We must remember that a surface 
3P⊂F  is normal, if it is non-singular in codim 1 and, as a complete 

intersection of ,3P  it is projectively normal to (see [9], Example 84.5, 

page 188). 

Every rational transformation between projective surfaces in 3P  can 
be regarded as the restriction of suitable transformations of projective 
space. 

Let us consider the following rational transformation: 3: Pτ →−−−  3
1P  

( ) ( ),::::::: 32101111 HHHHZYXT =τ  

given by the four homogeneous polynomials of the same degree 

[ ] ,3,,0,,,, …=∈ iZYXTHi k  

whose remainders ( )FJmod  does not have a common factor; and the 

transformation 3
1: Pσ  →−−−  3P  
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( ) ( ),::::::: 3210 LLLLZYXT =σ  

given by the four homogeneous polynomials of the same degree 

[ ] ,3,,0,,,, 1111 …=∈ iZYXTLi k  

whose remainders ( )GJmod  does not have a common factor. We also 

have a birational transformation from F  to ,G  if the following holds: 

( ) ( ) ( ) ( ),,,,,, 3030 GF JLLGJHHF ∈∈ ……   (1) 

and there are two non-vanishing polynomials [ ]ZYXTN ,,,k∈  and 

[ ],,,, 11111 ZYXTN k∈  for which the following holds: 

( ) ( ) ( ),mod::::::: 111111111111 GJZNYNXNTNZYXT =σ τ D   (2) 

and 

( ) ( ) ( ).mod::::::: FJNZNYNXNTZYXT =σDτ   (3) 

The relations (1), (2), (3) imply that the restrictions of τ  on 
{ }0≠N∩F  and of σ  on { }01 ≠N∩G  are regular maps, one being the 

inverse of the other. 

Indeed, if ( ) { }0::: ≠∈= NzyxtP PPPP ∩F  from (2), then we 

shall have 

( ( ) ( ) ( ) ( ) ) ( )( ),::: PzPNyPNxPNtPNP PPPP τσ==  

with ( ) ( ( ) ( ) ( ) ( )),::: 3210 PLPLPLPLP =τ  and with ( ) ,0≠PLi  for at 

least one 3,,0, …=ii  (otherwise ( )( ) ( )0:0:0:00:0:0:0 =σ  is not 

the point P ). By this and from (1), we obtain ( ) .G∈Pτ  

Below, we call { }0≠N∩F  the set of regularity of .τ  

In the same way, we can see that, if { },01 ≠∈ NQ ∩G  the point 

( )Qσ  exists and ( ) .F∈σ Q  
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Proposition 1. Let F:τ  →−−−  G  be a birational transformation 

between two normal algebraic surfaces in ,3P  and let G  be almost-

factorial. F  is almost factorial if and only if every irreducible curve 
,FD ⊂  whose image is a point on G  is a set-theoretic complete 

intersection of .F  

Proof. For τ  we keep the previously notations. The assumption that 
2dimdim == GF�  implies that τ  gives a birational transformation that  

induces a k  isomorphism ∗τ  between the rational fields on G  and .F  We 
can apply “Zariski’s main theorem” (see [10], page 49 in the form given by 
Bourbaki, Chapter 5, Examples 4-7) to the restriction of the birational 

transformation τ  between the affine varieties { }02 ≠= NX ∩F  and 

{ }01
2 ≠= NY ∩G  of 3P  because 2X  and 2Y  are non-singular in codim 1 

(so they are projectively normal). According to this theorem, for said 

( )xy τ=  to be a point at 2Y  for 2Xx ∈  can only happen in one of two 

situations: 

(1) if 1−τ  is regular at y, or 

(2) if there is a divisor D  on DF ∈x,  (called an exceptional 

divisor), the projective closure ( )Dτ  has dimension 0. 

An irreducible curve on { }0≠N∩F  can therefore be the pre-image 

either of a curve or of a point on { },01 ≠N∩G  so the hypothesis in 

Proposition 1 is necessary. Now, we have to demonstrate that it is also 
sufficient. 

According to the hypothesis in Proposition 1, every irreducible curve 
D′  on the set of non-regularity for τ  is a set-theoretic complete 

intersection of F  with a surface R′  in .3P  To show that F  is almost-
factorial, we need to verify that every irreducible curve D  on 

{ },0≠N∩F  whose image is a curve on ( )DCG τ=,  is actually a set-

theoretic complete intersection of .F  
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Denoting the restrictions of τ  as ,, ττ ′′′  we have the following 

situation: 

.

3
1

3

P

P

⊂⊂

↓′↓′′↓

⊂⊂

GC

FD

τττ  

As G  is almost-factorial, a surface ( ) 0,,,: 1111 =ZYXTHH  in 3
1P    

exists such that ( ).DCGH τ==∩  Let us consider the   polynomial 

( ) ( )ZYXTLHHHHH ,,,,,, 3210 =  and denote the surface 

( ) .0,,,: =ZYXTLL  

We consider the divisor 

.1,0,0,11 tjitt ≤≤>>′++′+=⋅ ννννν DDDLF …  

None of the components ,1, tjj ≤≤≠′ DD  can be transformed in C  

because τ  is invertible on ( ),DC τ=  so it belongs to { },0=N∩F  and 

( )jD′τ  is a point on .G  

Based on the hypothesis in Proposition 1, there are suitable surfaces 
( ) ,1,0,,,: tjZYXTRjj ≤≤=R  that cut on F  the divisors 

.1,0, tjjjjj ≤≤>µ′µ=⋅ DFR  

Let { }tmcm µµ=µ ,,... 1 …  and .1
j
j

j
t
i RR µ

µ

∏ =
=

ν

 If we consider the 

surface 0: =RR  in ,3P  we have first 

( ),11 ttDDRF ′++′µ=⋅ νν …  

and afterwards the canonical projections of L and of R in [ ],Fk  called l 

and r, provide 

( ) ( ) ( ) .div 1111 DDDDDD νννννν µ=′++′µ−′++′+µ=
µ

ttttr
l ……  
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We can apply the theorem of the integral closed Nœtherian’s domain to 
[ ],Fk  and this enables us to find a polynomial [ ]ZYXTS ,,,k∈  such 

that it defines the divisor Dνµ  on .F  The surface ,0: =SS  thus 

intersects F  along the curve D  with multiplicity Dν.µ  is therefore a 

set-theoretic complete intersection of ,F  and F  is therefore almost-

factorial. 

Lemma 1. If a pair of skew curves 1C  and 2C  exists on a surface     

F  of ,3P  then F  is not almost-factorial. 

Proof. Let 1C  and 2C  be two skew curves on .0, 21 /=CCF ∩  If F  

is almost-factorial, then there are two surfaces 3
21, P⊂HH  such that 

., 222111 CHFCHF nn =⋅=⋅  

As every curve in 3P  has a non-empty intersection with every surface, 
we have the contradiction 

.0 212121 CCHHFHC ∩∩∩∩ ==≠/  

Remark 1. The proof of Proposition 1 enables us to construct a 
suitable surface S  for which, given an almost-factorial surface F  and an 
irreducible curve thereon ,D  it holds that .SFD ∩=  In the case of F  

being rational, see the example in [6]. 

Lemma 2. Let F  be a normal surface in 2deg,3 ≥= nFA  and r be 

a straight line on .F  For r to be a complete intersection of F  with a 
surface ,G  

,degdeg, GFGF =µµ=⋅ r  

it is necessary that the plane tangent to F  along r remains fixed. 

Proof. This follows from the statement proved in [7]. 
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3. The Quartic Surfaces in 3P  with a Tacnodal Point 

Below, F  will be a normal quartic algebraic surface in 3P  with a 
tacnodal point, that we can assume to be ( ) ,1:0:0:0 ∞= Z  and we can 

take the cone tangent to F  at it (such a cone consists of two coincident 
planes) to be 0=T  (called the tacnodal tangent plane). F  will then be 
given by the equation: 

[ ],,,,,02 2442
22 YXTZTTZ k∈φφ=φ+φ+  

where 4φ  and 2φ  are homogeneous polynomials, 4φ  of degree four and 

2φ  of degree two, or .02 =φ  Let us denote ,4
2
2 φ−φ=∆  then the surface 

F  can be represented again with an equation in the form 

( ) .0: 2
2 =∆−φ+ZTF  

We call ,0=T  the plane to infinity of the affine space { }.033 =−= TPA   

To recognize and classify the kinds of quartic almost-factorial 
surfaces with a tacnodal point, we consider the following obvious facts: 
The section between F  and its tacnodal tangent plane ,0=T  i.e., 

{ },0==∞ T∩FF  is splitting into no more than four distinct lines; the 

cone 0=∆  of vertex ∞Z  is invariant under linear transformation of 

coordinates in { },033 =−= TPA  leaving the plane 0=T  and the 

point ∞Z  unchanged. 

Lemma 3. Let 02: 42
22 =φ+φ+ ZTTZF  be a quartic surface in 

.3P  Then 

(1) if two linear polynomials ,, 11 TcYbXavcTbYaX ′+′+′=/++=φ  

exist with ,0≠′−′ baba  such that both divide ,4φ  then a pair of skew 

lines exists on ;F  
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(2) if a linear polynomial ,1 cTbYaX ++=φ  divides ,2φ  and 2
1φ  

divides ,4φ  then F  is singular along the line { };01 =φ=T  

(3) a surface 02: 42
22 =φ+φ+ ZTTZF  has tacnodal points at O 

and at ,∞Z  if and only if the polynomials 42, φφ  are in [ ];, YXk  

(4) if a surface 02: 42
22 =φ+φ+ ZTTZF  has tacnodal points at O 

and at ∞Z  and their tangent tacnodal planes intersect at least in two 

distinct points ∞A  and ∞B  of ,∞F  then F  has the skew lines ,∞∞AZ  

;∞OB  

(5) on the surface ( ) 022: 42222 =++++ XcYbXYaXZTTZF  if 

it is ,0=c  then F  is singular along the line { }.0== TX  Assuming 

that ,1=c  to within a substitution ,1YbXY +−=  we can rewrite the 

equation for F  in the form [( ) ] .02 42
1

2222 =++−+ XYXbaZTTZ  For 

F,12 ±= ba  is singular along the curves { }.0 2
1 XZTY ±==  

Proof. (1) The lines { }cTbYaXZ ++== 0  and { +′== XaT 0  

}TcYb ′+′  exist on .F  From ,0≠′−′ baba  their intersection is 

{ == ZT  } .00 /=== YX  

(2) The section of F  and the pencil of the planes { }01 =λ−φ T  is 

given by 

( ) ( ) ,022 2
2

1
22

2
2

1
22 =φ′λ+φ′+=φ′λ+φ′λ+ ZZTTTZTTZ  

with suitable [ ].,,, 21 YXTk∈φ′φ′  

We obtain the line { }10 φ==T  counted twice for every F.k∈λ  is 

then singular along such a line. 

(3) ( ) ( ) 0,,2: 42
22 =φ+φ+ YXYXZTTZF  remains invariable under 

the symmetry of ,3P  which changes Z with T. The symmetric of the 

tacnodal point ∞Z  is the point O, which is then a tacnodal point on ,F  
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and the plane 0=Z  is the tacnodal plane tangent to F  at O. 
Conversely, if O is another tacnodal point of ,F  we can assume that the 

tangent tacnodal plane will be .0=Z  The equation for F  will be 
unchanged. 

(4) .0/=∞∞∞ OBAZ ∩  

(5) If ,0=c  then X divides bXYaX 22 +  and 2X  divides .4X  Then, 

from (2), F  is singular along { }.0== TX  We can assume that .1=c  

Substituting 1YbXY +−=  in ( ) ,022 42222 =++++ XYbXYaXZTTZ  

we obtain [( ) ] ;02 42
1

2222 =++−+ XYXbaZTTZ  if ,12 ±=− ba      

then ( ) .02: 2
1

22 =+± ZTYXZTF  At every point on the curves 

{ },0 2
1 XZTY ±==  the four partial derivatives of ( ) 2

1
22 2ZTYXZT +±  

become zero. This shows that F  is singular along these curves. 

Proposition 2. A quartic surface in 3
kP  that is non-singular in 

codimension 1 with two tacnodal points is not almost-factorial, if the field 
k  is supposed more than numerable. 

Proof. Based on Lemma 3, points (4) and (5), we can assume that 

( ) .1,02: 242222 ≠=+++ aXYaXZTTZF  

Let ( ) ( )ZTTXYXTXZYXT 232
1111 ::::::: =σ  be the composition 

of two blow-ups, one centered in the tacnodal point O of ,F  and one on a 

line infinitely near to O. The restriction on F  of σ  has as inverse the 
rational transformation 

( ) ( ).::::::: 1
2
11111

2
1

3
1

1 ZXYXTXTTZYXT =σ−  

The proper transform by σ  of F  is the cubic surface 

( ) ,02: 3
1

2
1

2
111

2
1 =+++ TYaTZTZG  
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G  is a non-singular cone in codimension 1 (elliptic), if .12 ≠a  So G  and 
F  are birationally equivalent non-rational surfaces. The locus of the 

non-regularity of σ  is given by ,0=M  where ,62XTM =  because 

( ) ( ).::::::: 626272631 ZXTYXTXTXTZYXT =σσ −D  

The section of F  with the set of non-regularity of σ  is 

{ } { } { } { }.02000 2 =+======= YZTXTXZXXT ∪∪∩F  

The lines { } { }0:,0: ==== TXsZXr  are the complete sections of 
F  with the tacnodal planes tangent to F  at O and at .∞Z  

Now, we show that the conic { }02: 2 =+= YZTXC  is a set-

theoretic complete intersection of FF .  is normal, so 






 −
zt
x4

div  on it is 

( ( ) )zt
yaxzttz 2222 2div444444 ++

==−−++ CC srsr  

 ( ( )).2div 22 yaxzt ++=  

The surface { ( ) }02 22 =++ YaXZT  thus intersects F  along .4C  

So, from Proposition 1, F  is almost-factorial if and only if G  is 
almost-factorial. 

We know that G  is not almost-factorial (see [13], Proposition 11, page 
171, where the field k  is supposed more than numerable), so F  will not 
be either. 

Lemma 4. Let [ ],,,,,02: 2442
22 YXTZTTZ k∈φφ=φ+φ+F  be a 

normal quartic almost-factorial surface. Then, the plane tangent to F  
along every component line of ∞F  can only be .0=T  

In addition, only one of the following cases can happen: 

(1) srsr ,,22 +=∞F  straight lines, ;sr ≠  
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(2) .4r=∞F  

If T divides ,2φ  then only case (2) holds. 

Proof. Let ∞⊂ Fsr ∪  with .sr ≠  We can assume, for example, 

that .,0:,0: k∈=+=== aaYXTYT sr  From Lemma 2, it follows 

that the plane tangent to F  along r remains fixed; if it were different 
from ,0=T  let us assume, for instance, that .0: =α Y  From 
( ) ,2, ≥α∩FrI  there must therefore be suitable homogeneous 

polynomials [ ],,,,,, 2311 YXTk∈φ′φ′φ ′′φ′  such that, ,112 φ ′′+φ′=φ TY  

,2
2

34 φ′+φ′=φ TY  resulting in 

( ) ( ) .022: 3121
22 =φ′+φ′+φ′+φ ′′+ ZTYZZTF  

The section between F  and α  is 

{ } { }.02:where,20 21
2 =φ′+φ ′′+=+==⋅ ZZYY CCF r  

The two curves s and C  on F  are skew because their intersection is 

{ } .002 21
2 /==φ′+φ ′′+==+== ZZYaYXTC∩s  

From Lemma 1, this contradicts the assumption that F  is almost-
factorial. 

∞F  thus consists of two distinct lines at most. Along these lines, the 

(fixed) plane tangent to F  is .0=T  So we can only have the two 
situations 

srsr ,,22 +=∞F  straight lines, ,sr ≠  or .4r=∞F  

Now, let us suppose that srsr ,,22 +=∞F  distinct lines, and 

,12 φ=φ T  with [ ].,,1 YXTk∈φ  Then .02: 41
222 =φ+φ+ ZTTZF     

To within a linear change of coordinates in ,3P  we can assume that 

{ }TYX ==∞ 0: 22F  and let 

( ) [ ].,,, 22
2322322

4 YXTvvTdYcXYYbXaXTYX k∈//+++++=φ  
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The equation for the surface ,02: 41
222 =φ+φ+ ZTTZF  can also 

be written in the form 

[ ( )] [ ( )]dYcXTXbYaXTY ++++ 22:F  

 [ ( ) ( ) ] .02 21
22 =/+++−φ++ vdYcXbYaXZZT  

This means that the line 0: == XTr  and the quartic ,Q  which is 

the intersection of the quadrics ( ) 02 =++ bYaXTY  and −φ+ 1
2 2ZTZ  

( ) ( ) ,02 =/+++ vdYcXbYaX  belong to .F� Now, the curves r and Q  on 

F  are skew because 

{ } .0022 /====== ZYXTQ∩r  

This fact, from Lemma 1, contradicts the hypothesis that F  is almost-
factorial. So, if T divides ,2φ  then .4r=∞F  

4. Quartic Surfaces in 3P  with a Tacnodal Point  
and Two Distinct Principal Tangents 

As a first step in the investigation into almost-factoriality for the 

quartic surfaces in 3P  with a tacnodal point, we have 

Lemma 5. Let 02: 42
22 =φ+φ+ ZTTZF  be a quartic surface in 

3P  with { } .,220 srsr ≠+===⋅ ∞FF T  If we assume that surfaces 

0: =GG  and 0: =HH  exist such that ( ) FGG ⋅=rdeg4  and 

( ) ,deg4 FHH ⋅=s  then the surfaces HG,  must be quadrics ,01 =Q  

02 =Q  and F  can be written as 

.0: 4
21 =+ TQQF  

Proof. Let us take ,F  with .,22 srsr ≠+=∞F  To within a 

suitable choice of the coordinates in ,3P  we can assume that 

{ } ⋅==∞ 022YXF  { },0=T  where .0:,0: ==== TYTX sr  
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Let 0: =GG  and 0: =HH  be surfaces of degree n such that   
FG ⋅=rn4  and FH ⋅=sn4  (we can assume that ( ) ( ),degdeg HG =  

substituting possible G and H with their suitable powers). In the pencil of 

surfaces ,0: 2 =µ+λΦ nTGH  we consider ,0: 2
000 =µ+λΦ nTGH  

which passes through a point 0P  on { }.0≠T∩F  The surface 0Φ  cut on 

0: =FF  a divisor that is the sum of sr nn 44 +  and of a curve passing 
through ,0P  and its degree is strictly greater than .degdeg8 0 Fn Φ=  

According to Bézout’s theorem, the surface 00 =Φ  is reducible and F  is 

therefore one of its components. So, a homogeneous polynomial 
[ ]YXTL ,,k∈  of degree 42 −n  exists for which 

.2
00 FLTGH n =µ+λ  

But the intersection between 02 =nT  and 0: 2
000 =µ+λΦ nTGH  is 

,44 sr nn +  and this coincides with the intersection between 02 =nT  and 
.F  It follows that { } ,00 /=== TL  thus ,0, ≠∈= ccL k  

( ) ,048deg =−= nL  then .2=n  In the light of all the above, 

cFTGH =µ+λ 4
00  and we can assume ,, 00 cc =µ=λ  so we can write 

,4
21 TQQF +=  where 

( ) ,02
1 =++++= cTbYaXZTXQ  

and  

( ) .02
2 =′+′+′++= TcYbXaZTYQ  

The coefficients of the monomials 2X  and 2Y  can both be assumed to be 
1. 

Instead of ( ) ,02
2 =′+′+′++= TcYbXaZTYQ  we can take 

02
2 =+= TZYQ  by substituting Z with TcYbXaZ ′−′−′−  and 

( )cba ,,  with ( ).,, ccbbaa ′−′−′−  
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Proposition 3. The quartics 02: 42
22 =φ+φ+ ZTTZF  in 3P  

with { } ,,220 srsr ≠+===⋅ ∞FF T  are almost-factorial if and only if 

they can be written in the form 

( ) [ ( )] [ ] ,0:1 422 =++++++ TTZYcTbYaXZTXF  

( ) .644 222 =−+ abcwith  

( )1F  are 8-almost-factorial. 

Proof. From Lemma 5, we can assume that ,0: 4
21 =+ TQQF  

where ( ) 02
1 =++++= cTbYaXZTXQ  and .02

2 =+= TZYQ  

Each of the straight lines r, s is a complete intersection of F  with 
multiplicity 8 because 

{ } { } { } { }.080and080 21 ====⋅====⋅ YTQXTQ FF  

In addition, we obtain a parametrization of F  on 2P  by means of 

( ) ( ),::::::: 2
321 WPPWPPWPPZYXT =τ  

with the following polynomials of [ ] :VU,W,k  

( ),2 bWaWVUWP −−=  

,3222
1 WcUWbUVWWUUVP −++−−=  

,3222
2 WcUWaUVWWUUVP −+−−=  

( ).21
2

1
2

3 cPbPaPPWWPUPP ++−−=  

On F  the transformation 

( ) ( ( ( )) ( ) ),:::: 22 TXYcTbYaXTZTXTVUW −++++=  

is the inverse of .τ  To apply Proposition 1 to ,F  we must compute the 
polynomial defining the set of non-regularity of the parametrization on .F  
In the present case, the polynomial is 
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( )[ ] [ ( )] ,22 2227 cTbYaXTTZXYXTbaTM ++++−++=  

0=M  intersects F  along the two lines r, s, and along the section 
between F  with the plane 

( ) .022: =−++π YXTba  

As a result, the intersection between π  and F  generically splits into two 

conics, 1C  and ,2C  and they coincide if ( ) .644 222 =−+ abc  For 

24
22
−−= bac  and for ,24

22
+−= bac  indeed we have, respectively, 

the surfaces 

( ) ( ) .02,02
2222 =++++=+−++ TZTXTbaTZTXTba  

On these two surfaces, the plane ( ) 022: =−++π YXTba  intersects 

them along a conic counted twice. We denote with 

( ) [ ( )] [ ] ,0:1 422 =++++++ TTZYcTbYaXZTXF  

( ) .644with 222 =−+ abc  

( )1F  is almost-factorial and its index of almost-factoriality is .8=ν  

Now, we prove that F  is not almost-factorial if ( ) .644 222 =/−+ abc  

Let .abd −=  When c satisfies the equation ,082 32 =++ bdcd  the 
irreducible conics 







=−+

=−+

,0

,022
:

2 dXTXZT

dTYX
D  

are a subset of .F  We consider the affine space { }033 ≠= T∩PA  and 

we will have 3A∩FF =a  and .3A∩DD =a  As ( )aDD  are 

irreducible curves, if D  is a set-theoretic complete intersection of ,F  
then aD  will be a set-theoretic complete intersection of aF  too. 
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Let T
ZzT

YyT
Xx === ,,  be affine coordinates in .3A  We have 








+−=

+−=
=

.

,2
2 dxxz

dxy
aD  

Now, we consider De Jonquieres’ transformation of 3A  

{ },,2,: 2
111111 xdxzzdxyyxxDJ +−=−+==  

DJ transform aF  and ,aD  respectively, on a surface aG  and on the 

straight line { }0: 11 == zyr  on .aG  As DJ is an isomorphism of ,3A  

aD  is a complete intersection of aF  if r is a complete intersection of .aG  

This fact holds if it is satisfied the necessary condition stated in [7] 
(Lemma 2) analyzing how varies the plane tangent to aG  at a generic 

point ( ) .0,0, r∈p  This is ( ) ( ) .0163216 1
4

1
45 =−++−+ zdypdadd  

As ( )0,0,p  moves along r, the plane remains fixed if and only if 

,0164 =−d  and it is only in this case that the straight line r can be a 
complete intersection on the surface .aG  

Now we compute ( ) ,4 222 abcA −+=  substituting ,adb +=  

2

3

2
8

d
bdc +−=  in A. Thus, 4

4
25632 d
d

A ++=  and 64=A  if and only if 

.164 =d  This leads us to conclude that, if ( ) ,644 222 =/−+ abc  then the 

curves D  on F  cannot be a set-theoretic complete intersection of .F  

This goes to show that F  is almost-factorial if and only if ( −+ 24 bc  

) .6422 =a  
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5. Quartic Surfaces in 3P  with a Tacnodal Point  
and Only One Principal Tangent 

We can write ( ) ,0: 2
2 =∆−φ+ZTF  where .4

2
2 φ−φ=∆  

Let us consider the birational transformation 3: Pτ →−−− 3
1P  

( ) ( ( )),::::::: 2
2

1111 φ+= TZTYTXTZYXTτ   (4) 

and we have, for its restriction on F  

( ) ( ( )),::::::: 2111111
2

1
1 φ′−=− ZTYTXTTZYXTτ  

where ( ).,, 11122 YXTφ=φ′  

The set of non-regularity of τ  is ,0=T  and 01 =T  for ,1−τ  because 

we have 

( ) ( ),::::::: 33341 ZTYTXTTZYXT =−ττ D   

and 

( ) ( ).::::::: 1
3

11
3

11
3

1
4

11111
1 ZTYTXTTZYXT =− ττ D  

Using ,τ  we obtain 

( ) [ ( )] ( )} ( )1111
2

1
2

1111
2

12
2

1111211 ,,,,,,: TYTXTTYTXTTYXTZT ∆−φ+φ−Fτ  

[ ( )] .0,, 111
2

1
2
1

4
1 =∆−= YXTTZT  

The proper transform of F  by τ  is ( ) .0,,: 111
2

1
2
1 =∆− YXTTZH  

If F  is almost-factorial, then the affine part { }0≠T∩F  of F  is 

almost-factorial too because the exceptional divisor for τ  is the line     
{ },0=T∩F  counted 4 times. So H  is almost-factorial if its affine part 

{ }01 =/T∩H  is almost-factorial, and { }01 ==∞ T∩HH  is a complete 

intersection in .3
1P  
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To examine ,H  we have to distinguish between three cases where 

4
2
2 φ−φ=∆  is irreducible, or a factor of ∆  is T or not T. 

5.1. The surfaces F  with r4=∞F  and ∆  are irreducible 

First, we examine a surface of the equation ( ) 0,,: 4
22 =φ+ YXTTZF  

of the kind ( ) 0,,: 111
2

1
2
1 =∆− YXTTZH  just found. 

Lemma 6. The polynomial ( )22
34

4 χ+/++−=φ TvXTTYX  is 

irreducible for every homogeneous polynomial [ ].,,, 22 YXTv k∈χ/  

Proof. A suitable splitting of 4φ  in [ ]YXT ,,k  would be one of two 
kinds: 

[ ( )] ( ) ,,,,,;3223
4 k∈++++++−=φ edcbaeTdYXTcYbXYYaXX "  

[ ( )][ ( )] .,,,;2222
4 k∈++++++−=φ dcbaTdYcXYXTbYaXYX ""  

As in 3223
4 ,,, XYYXYXφ  have zero as a coefficient, and in both the 

equalities it must hold that ;0==== dcba  but then the monomial 
3TY  has zero as a coefficient: Contradiction!. This shows that 4φ  is 

irreducible. 

Lemma 7. Let 3
4

22 0: P⊂=φ+TZF  be a quartic surface, where 

[ ( ) ( )] .,,,, 4
22

3
4 XYXTTYXTvXTTY +χ+/+=φ  

A suitable plane lTZ =  exists that intersects the surface F  along an 
irreducible curve { },: lTZ =∩FC  which proves to be singular in at least 

one point { }.00 =∈/ TP  

By means of a suitable choice of coordinates in { },033 =−= TPA  

we can assume 4φ  of the form 

( ) ( ),2222
4 eYTdXTYcXYbXTYXaTX ++++++−=φ  

with .,,,, k∈edcba  
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Proof. Let us first prove the existence of a section { }0: 4 =φ=− lTZC  
on F  that is irreducible and it has a singular point 0P  on it that does 

not belong to the plane .0=T  Let ,3
442 φ+−= TXTlF  where 

( ) ( );,,,, 22
3

3 YXTTYXTvXY χ+/+=φ  by choosing suitable ,k∈l  the 
homogeneous system in YXT ,,  

[ ( ) ( )]












=++=
∂
φ∂

=
∂
∂

=
∂
φ∂

+−=
∂
∂

=
∂
φ∂

+φ+=
∂
∂

,03

,04

,04

23

33

3
3

32

"" TXYTYTY
F

XTXX
F

TTTlT
F

 

has at least one solution that gives a point ( ),::: 00000 ltyxtP =  with 
.00 ≠t  Indeed, a possible point with ( )0:::00 000 yxt =  singular for 

,C  would satisfy 

{ } { }.00 3
3 ZYXTZXT ======φ===  

So 000 == yx  and such a point 0P  does not exist. 

Now { }0: 3
442 =φ+−=− TXTllTZC  cannot be reducible because 

the plane lTZ =  is transversal to the cone [( ( )YXTvXYXTl ,,2
3442 /++−  

( )] ,0,,2 =χ+ YXTT  which is irreducible because, from Lemma 6, the 

polynomial ( )22
34 χ′+/++− TvXTTYX  is irreducible, with .22

22 Tl+χ=χ′  

To within a change of affine coordinates, we can assume that the 
plane lTZ =  is ,0=Z  that the singular point on C  is ( 0:10 == OP  

),0:0:  and that one of the lines tangent to C  through 0P  is 0== YZ  
at the point ( ).0:0::1 aA −=  These assumptions can be drawn in the 

light of the fact that ,3
4

4 φ+−=φ TX  and the coefficient of 3Y  in 3φ  is 1. 
In this chosen frame, the curve C  is given by 

{ ( ) ( )},0: 2222 eYTdXTYcXYbXTYXaTXZ ++++++−==C  

with .,,,, k∈edcba  
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Proposition 4. The normal quartic surface of 3P  

[ ] ,4,,0: 44
22 r=∈φ=φ+ ∞FF withTZ YX,T,k  

is almost-factorial if and only if, to within a suitable linear change of 
coordinates, it is 

.0: 3422 =+−∗ TYXTZF  

∗F is 12-almost-factorial. 

Proof. We can assume that ∞∞= YZr  and now ,3
4

4 φ+−=φ TX  

where ( ),22
3

3 χ+/+=φ TvXY  and [ ]YX,T,k∈χ/ 22,v  are zero or 

homogeneous polynomials of degree 2. The coefficient of 3Y  can be 
assumed to be 1 (it cannot vanish otherwise the generic plane TX λ=  
would intersect F  along the lines 0== XT  counted at least twice, in 
which case F  would be singular in codimension 1). So, the hypotheses of 
Lemmas 6 and 7 hold, for which we can assume that 

( ) ( ) .0: 222222 =++++++− eYTdXTYcXYbXTYXaTXTZF  

Now, let us consider the rational transformation 3: Pσ →−−− 3
2P  

( ) ( ( )( ),::::::: 2
2222 aTXXZTTYTXTZYXT +−=σ  

which has the following inverse transformation on ( ):Fσ  

( ) ( ( ( )).::::::: 222222222
2
2

1 aTXXTZYTXTTZYXT ++=σ−  

As a result, 

( ) ( )).::::::: 2
3
22

3
22

3
2

4
22222

1 ZTYTXTTZYXT =σσ− D  

From this, the factor of non regularity is ,02 =T  which proves that σ  is 

biregular on the affine part { }.02
3
2 ≠T∩P  By means of ,σ  the surface 

F  will be transformed into 
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[ ] .022 2
2
2222

3
2

2
222

2
22

2
2222

2
22

5
2 =+++++++ TeYTYdXYYcXYbXZXTZaXZTT  

To within the factor ,5
2T  we thus find that the proper transform of F  is 

the cubic (monoid with a double point at ( )0:0:0:11 =O ). 

( ) .022: 2
222

2
22

2
2

3
2

2
22222

2
223 =+++++++ YcXYbXZXYeYYdXZaXZTF  

02 2
222

2
22

2
2

3
2 =+++ YcXYbXZXY  is an irreducible cubic cone that is 

singular along the line { }022 == YX  and intersects the quadric cone 

,02: 2
22222

2
2 =+++Γ eYYdXZaXZ  

along the line { }.022 == YZ  As this line is irreducible, it is a set-

theoretic complete intersection of .3F  Then we can apply Proposition 1 

to the surface ,3F  which is therefore almost-factorial and it must be one 

of the three almost-factorial surfaces (monoids) classified by Stagnaro 
(see [13], Theorem on page 143). To within a suitable linear change of 

coordinates in ,3P  these monoids are one of the following kinds: 

( ) ,0:)I( 3
222

2
22 =++ XZXYT  

( ) ,0:)(II 3
2222 =− ZYXT  

( ) .0:)(III 3
2

2
22

2
22 =++ YZXXT  

A priori, the following cases may occur: 

(1) If Γ  is irreducible ( ),04 22 ≠− dea  then 3F  will be the surface 

(I) for which the six lines on 3F  passing through 1O  must concide. This 

condition is met if the resultant polynomial, with respect to 2Z  (which is 

now Γ∈/∞2Z ) between 
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( ),2and2 22222
2
2

3
2

2
22222

2
2 cYbXYXZXYeYYdXZaXZ ++++++  

is a sixth power of one linear form in ., 22 YX  But such a resultant is 

[ ( ) ( ) 2
4
2

25
22 444 YXebacXdabY −−+−  

( ) ( ) ],2222 5
2

4
22

3
2

2
2

22
2

3
2 YYcXYXbcYXbca −−+−−+  

which would consequently be divisible by .6
2Y  This implies that 

,0===== deabc  

and this contradicts .04 22 ≠− dea  So F  cannot be transformed into the 

3F  of the kind (I). 

(2) The cone Γ  is reducible ( )22 4.,e.i ead =  in two distinct or 

coincident planes. In the first case, 3F  is of the kind (II) and both of the 

two component planes of the cone must intersect the monoid along three 

coincident lines. The resultant must then be divisible first by ,3
2Y  and 

then by the third power of a linear form in ., 22 YX  This implies that the 

resultant is ,6
2Y  so .0== cb Γ  is therefore the plane 02 =Z  counted 

twice. This means that the surface is of the kind (III), with 
,0=== eda  and the plane 02 =Z  must intersect 3F  along a line 

counted three times. We have .02: 2
2
2

3
2

2
223 =++ ZXYZTF  To within a 

change of coordinates in ,3P  the assigned surfaces 

[ ] ,4with,,0: 44
22 r=∈φ=φ+ ∞FF YX,T,kTZ  

are 

.0: 3422 =+−∗ TYXTZF  

This demonstrates Proposition 4. We note that the point 

( )0:0::1 aA −=  becomes O, and C  has a triple point at ∗F.O  can be 

parametrized on the plane 2P  by 
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( ) ( ( ) ( ) ( ) ).:::::: 622422322223 UVUWWVUWVWUWWZYXT −−−=  

The inverse correspondence on ∗F  is ( ) ( )XYTZXVUW :::: 2=  

with the factor of non-regularity .66 TYXM =  

It is easy to see that the surface ∗F  is 12-almost-factorial. The 

surface ∗F  was investigated in [6], Example 1, page 290. 

Remark 2. In the above-mentioned paper [6], it had been shown how 
computing a surface ,G  whose complete intersection with F  is C  with 
multiplicity ( ) ( ) ( )CGF degdegdeg=µ  for every irreducible curve C  on 

,F  and some examples were given. 

Proposition 5. Let ,02: 42
22 =φ+φ+ ZTTZF  be a quartic surface 

on 3P  with { } ,40 r===⋅ ∞FF T  and 4
2
2 φ−φ=∆  is irreducible. F  is 

almost-factorial if and only if F  can be written in the form 

( ) ( ) .1,0:2 23422 ≠=+−+ aTYXaXZTF  

F  will be 12-almost-factorial. 

Proof. We have { } ,40 r==⋅ TF  so we can write 

( ) [ ].,,, 33
4

4 YX,T,k∈φφ+=φ YXTTX  

Let ( ) .,,,,,,22
2 k∈+++++=φ fedcbaTfeYdXTcYbXYaX  

From the birational transformation (4), the proper transform of F  by 

τ  is ( ) ,0,,: 111
2

1
2
1 =∆− YXTTZH  where ∆  is irreducible. So, we can 

apply Proposition 4 to .H  In particular, in a suitable coordinates’ frame 

of ,3
1P  we see that ( ) ( )1113

4
1

2
1112 ,,,, YXTTXYXT φ−−φ=∆′  can be 

written in the form of .1
3

1
4
1 TYX +−  Now 4

1Y  and 2
1

2
1YX  do not appear in 

,∆′  so it necessarily is ,0== cb  and therefore, we have +=φ 2
2 aX  

( ) .,,, k∈++ fedTfeYdXT  By replacing the coordinates in 3P  with 
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,,,, TfeYdXZZYYXXTT +++=′=′=′=′  

we obtain surfaces of the kind 

( ) .1,0 23422 ≠=′′+′−′+′′ aTYXXaTZ  

We can thus conclude that, to within a change of coordinates, when 

{ } r40 ===⋅ ∞FF T  and 4
2
2 φ−φ=∆  is irreducible, the only quartic 

almost-factorial surfaces in 3P  are of the kind 

( ) ( ) .1,0:2 23422 ≠=+−+ aTYXaXZTF  

( )2F  are 12-almost-factorial. 

5.2. The surfaces F  with ∆=∞ ,4rF  reducible, T not factor of ∆  

Proposition 6. Let ,02: 42
22 =φ+φ+ ZTTZF  be a quartic surface 

in 3P  with { } r40 ===⋅ ∞FF T  and 4
2
2 φ−φ=∆  reducible, but T 

does not divide .∆  In a suitable coordinates’ frame, F  is almost-factorial 
if and only if it is of the kind 

( ) ( ( ))211
22:3 YbXaTYaXZT ++++F  

[( ) ( )] [( ) ( )] ,02121 2222 =+++++++−− gYXfTYXaeYdXTYXa  

where ( ) ( ),0,0,,12 ≠≠ gea  with ( ) ,1/ 222 =+ gfa  and .0def =/g  

( )3F  is 4-almost-factorial. 

Proof. Let ,2 1
22

2 φ+++=φ TcYbXYaX  and now ,3
4

4 φ+=φ TX  

with [ ]YXT ,,, 31 k∈φφ  suitable polynomials vanishing or of degrees 1 

and 3, respectively. If F,0 31 φ==φ  has two tacnodal points and we 

can apply Lemma 3 and Proposition 2 to .F  Such a surface is not almost-
factorial. Then we can assume that ( )31, φφ  does not vanish and, as done 

in Lemma 3, (5), we can assume that .1,0,1 2 ≠== abc  Let 

.1111 TcYbXa ++=φ  Thus 
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( ) ( ) ,,, 3
42

1
22

4
2
2 φ−−φ++=φ−φ=∆ TXTYaXYXT  

and, since ∆  is reducible but T does not divide ∆  every factor 

( ) [( ) ] [( ) ],11 22224222 YXaYXaXYaX +++−=−+  

is different from zero. So, it must be that 22χ/=∆ v  with non-vanishing 

suitable polynomials of [ ].,, YXTk  Here we can assume that ( 0:11 =O  

) F∈0:0:  and at 1O  satisfies 0221 =χ=/=φ v  (possibly by substituting 

X, Y with suitable k∈+=′+=′ vuvTYYuTXX ,,, ). So, we can 

suppose ,01 =c  so ,111 YbXa +=φ  and 

( ) ( ),21 22
2 eYdXTYXav +++−=/  

( ) ( ).21 22
2 gYXfTYXa ++++=χ  

The equation for F  can be written in the form: ( ) .22
2

2 χ/=φ+ vZT  

We can obtain a parametrization of F  on 2P  by assuming first 

,,
2

2
X
Y

W
U

v
ZT

W
V =

/
φ+

=  

and then, from the relation 

( ) ,
2
2

2
2

2
2

2

2

vv
ZT

W
V

/
χ

=
/

φ+
=  

we shall have .2
2

2
2 χ=/ WvV  So it must be 

[( ) ( ]XW
UedXW

UTX
W
UXaV +++− 21 2

2

2
22  

[( ) ( )].21 2
2

2
22 XW

UgXfW
UTX

W
UXaW ++++=  
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Omitting the factor X from the relation above, we shall have 

,and D
UN

T
Y

D
WN

T
X ==  

where 

[ ( ) ( )],2 22 eUdWVgUWfWN +−+=   (5) 

[( ) ] [( ) ].11 222222 UWaWUWaVD ++−+−=   (6) 

Finally, from ( ) ,22 vVZTW /=φ+  we first have 

( ) ( ) ,,,,, 22
W

YXTWYXTvVZT φ−/=   (7) 

( )YXT ,,2φ  and ( )YXTv ,,2/  being homogeneous of degree 2, we shall 

have 

( ) ( ),,,,, 22

2
22

2
UNWND

D
TYT

DXT
DTT

D
D
T φ=φ  

( ) ( ).,,,, 22

2
22

2
UNWNDv

D
TYT

DXT
DTT

Dv
D
T

/=/  

Finally, 

,2WD
P

T
Z =  

where we have put 

( ) ( ) [ ],,,,,,, 22 WVUUNWNDWUNWNDvVP k∈φ−/=   (8) 

a polynomial of degree 9. Only if it is supposed ,0≠N  i.e., ( ) ≠gfed ,,,  

( ),0,0,0,0  we obtain a parametrization for the surface F  given by 

,,, 222

2

WD
P

T
Z

WD
WUND

T
Y

WD
NDW

T
X ===  
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and this is a restriction to F  of the rational map 2: Pσ →−−− 3P  

( ) ( ).:::::: 22 PWUNDNDWWDZYXT =  

The rational transformation 3P →−−− 2P  

( ) ( ( )),:::: 222 φ+//= ZTXvYvXVUW  

induces one birational transformation inverse of σ  on .F  When we 
substitute, mod ,F  respectively, 

( ),,,with,, 222 φ+// ZTXvYvXVUW  

we have, of course ,, 22 vYUvXW /=/=  and from (5) and (6), 

,, 2
2

23
2

2 RvTXNRvTXD /=/=   (9) 

where ( ) [( ) ] ( ) [( ) ].1212 2222 YXagYfXYXaeYdXR +−+−+++=  

From (7), (8), and (9) results 

( ) ( )UNWNDWUNWNDvVP ,,,, 22 φ−/=  

( ) ( )RvYXRvXRvTXvWRvYXRvXRvTXvV 3
2

23
2

33
2

2
2

3
2

23
2

33
2

2
2 ,,,, ////−////=  

[ ( ) ( )] .,,,, 27
2

526
2

4
22

26
2

4 RvZTXZTWRvXYXTWYXTvVRvX /=/=φ−//=  

Therefore, we have for ,,,, ZYXT  respectively, 

( ) ( ) ( ) ( ).,,, 27
2

527
2

527
2

527
2

5 RvTXZRvTXYRvTXXRvTXT ////  

Thus, the factor of non-regularity of ,mod, Fσ  is 

,27
2

5 RvTXM /=  

where ( ) [( ) ] ( ) [( ) ].1212 2222 YXagYXfYXaeYdXR +−+−+++=  
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We note that R splits into three linear forms in X, Y, and R is just the 
resultant of 2v/  and 2χ  with respect to T. 

Now the surface 0=M  cuts the following curves on :F  

- the section of F  with the quadric ;02 =/v  this is the irreducible 

quartic 0: 224 =φ+=/ ZTvC  (counted twice), if 2v/  is irreducible; 

otherwise, if 2v/  is reducible, we obtain two conics (counted twice), each of 

which is the intersection of 02 =φ+ZT  with a plane component of 

;02 =/v  

- 0=T  gives the line 0: == TXr  on F  counted 4 times; 

- the section between F  and 0=X  splits into the line r and the 
irreducible (rational) plane cubic 

{ ( ) ( ) ( )}.4220: 2
1

2
1

3
1

2
3 egbTYgebYTbYZYTZX −+−−+++==C  

Now r is a set-theoretic complete intersection of F  with 0=T  and 
also 3C  because on ,F  we have 

( ) .4444div 33
4 CCF =−+=− rrtx  

If we set 32
2 2 φ+φ+= ZTZG  is ( ) 34div CF =g  and therefore 

{ }0: =GG  intersects F  along .4 3C  

- 0=R  gives three planes passing through the line ,0== YX  each 
of them, different from tXYX == ,0  intersects F  along a reducible 

quartic if and only if, for ∆= tXY  becomes a square ,42
22 XAv =/χ=∆  

with .k∈A  We are interested in the planes tXY =  over which it 

results 0=R  and so 

42XA  

( ) ( ) ( ) ( ) [( ) ] .1144 4223222 XtaTXtagtfTXgtfetd −+++−−+−−=
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When g
ft =  and ( ) 0,012

2

2
2 =≠−+= R

g
faA  implies .e

d
g
f =  The 

plane 0=+ gYXf  intersects F  according the two different conics 

{ ( ) ( ) }.0 2
2

2
11 X

g
faAXTg

fbaZTgYfX ++±+−+==+  

Arguing similarly the final part of proof of Proposition 3, one shows 
that these conics can not be complete intersection on .F  

When e
d

g
ft ==  and ( ) ,012

2

2
2 =−+=

g
faA  i.e., ,1 2

2

g
fa −±=  we 

find the two double conics 

{ } { }.02and,02 2222 φ+==χφ+==/ ZTZTv  

The plane ,0=+ eYdX  if ,gdfe ≠  intersects F  according complete 

intersections: A double conic if ,1 2

2

e
da −=  or an irreducible quartic. 

The same is for the plane ,0=+ gYXf  if .gdfe ≠  It intersects F  

according a double conic if ,1 2

2

g
fa −−=  or an irreducible quartic. 

From Proposition 1, F  is almost-factorial if and only if ( ) ,12
2

2
=+

g
fa  

with F.0def ≠g  results 4-almost-factorial. 

Let us denote the said almost-factorial surface with 

( ) ( ( ))211
22:3 YbXaTYaXZT ++++F  

[( ) ( )] [( ) ( )] ,02121 2222 =+++++++−− gYXfTYXaeYdXTYXa  

with ( ) ,12
2

2
=+

g
fa  .0def ≠g  
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5.3. Quartic surfaces F  with r4=∞F  and with T dividing ∆  

We can write ( ),,,3 YXTvT /=∆  and not ( ),,,2
2 YXTvT /=∆  

because the surface 

( ) ( ) ,0,,2
22

2 =/−φ+ YXTvTZT  

would be singular along { }.02 =φ=T  

In the case under investigation, we obtain, by τ  in (4), from the 

surface ( ) 0: 3
2

2 =/−φ+ vTZTF  the cubic surface (double plane) 

( ) .0,,: 11131
2
1 =/− YXTvTZH  

If F  is assumed to be almost-factorial, so is { },0≠T∩F  and the 

affine part { }01 ≠= Ta ∩HH  must therefore be almost-factorial. 

Conversely, if aH  is almost-factorial, so is { }0≠T∩F  because the 

transformation τ  is biregular on { },03 ≠T∩P  and being FF ,4r=∞  

is also almost-factorial. 

We examine all the possibilities in the following proposition: 

Proposition 7. Let ,02: 42
22 =φ+φ+ ZTTZF  be a normal surface 

in ,3P  with .4r=∞F  If T divides ( ) F,,, 4
2
2 φ−φ=∆ YXT  is almost-

factorial if and only if, to within a linear change of affine coordinates in 

{ },03 =− TP F  is one of the following: 

( ) [ ( ) ] ( ) ;00,0:4 22 ≠≠≠=+−++ baYXTXYbYaXZTF  

( ) [ ( ) ] ( ) ;0,0,0:5 22 ≠≠=+−++ baTXTXYbYaXZTF  

( ) [ ( ) ] ( ) ;0,0,0:6 222 ≠≠=+−++ baTXYTXbYaXZTF  

( ) [ ( ) ] ( ) ;0,0:7 222 ≠=+−++ bXTYTXbYaXZTF  
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( ) [ ( ) ] ( ) ;0,0:8 2222 ≠=+−++ bXYTTbYaXZTF  

( ) [ ( ) ] ( ) .0,0:9 3222 ≠=+−++ bXTYTbYaXZTF  

The surface ( )9F  is 12-almost-factorial; all the others are 4-almost-

factorial. 

Proof. As T is a factor of ∆  (reducible), in every case it must hold 
that 

{ } { } { } ,40200: 2
2
24 r==φ===∆−φ===φ=∞ TTTF  

with r a suitable line, that we can assume { },0: =+= bYaXTr  with 

ba,  satisfying the condition to avoid F  is singular along r. So we have 

( ) ,, 31
2

2 vTTbYaX /=∆φ++=φ  

∆  being reducible we have to examine the case in which the almost-
factorial surface F  will be transformed into the double plane 

( ) .0,,: 11131
2
1 =/− YXTvTZH  

The exceptional divisor of τ  is { ( ) }.0,, 11131 =/= YXTvT  This divisor 

splits into straight lines passing through ∞Z  and its affine part 

{ }01 ≠= Ta ∩HH  must be almost-factorial. The affine cubic surface 

aH  is then among those listed in [4]. We are interested only in those that 

have the projective closure with ∞H  splitting into lines passing through 

:∞Z  

(1) they are three distinct lines; 

(2) two of the three lines coincide; or 

(3) all three lines coincide. 

The double cubic planes with the above said property are the 
following: 
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For case 1 in the list linked to [4], we have only the surface n.14, and 

by changing ( )111 ,, ZYX  with ( )111 ,, ZYX −−  is 111
2
14 : YXTZ −H  

( ) ;011 =+ YX  this corresponds to the quartic surface 

( ) [ ( ) ] ( ) .00,0:4 22 ≠≠≠=+−++ baYXTXYbYaXZTF  

For case 2, there are two surfaces in the list 

- n.45, assuming 1−=t  and exchanging ( )ZYX ,,  with ( ),,, 111 YZX −  

we have ( ) ,0: 11111
2
15 =+− TXYXTZH  and 

- n.64, exchanging ( )111 ,, ZYX  with ( ),,, 111 YZX −−  we have 

( ) .0: 2
11111

2
16 =+− TYXXTZH  The corresponding surfaces are 

( ) [ ( ) ] ( ) ,0,0,0:5 22 ≠≠=+−++ baTXTXYbYaXZTF  

( ) [ ( ) ] ( ) .0,0,0:6 222 ≠≠=+−++ baTXYTXbYaXZTF  

Finally, for case 3, we have the surfaces H  in 3
1P  that are almost-

factorial because { }01 =⋅ TH  is irreducible. We thus find the surfaces 

n.72, n.76, and n.78. For the surface n.72, exchanging the coordinates 

( )111 ,, ZYX  with ( ),,, 111 YZX−  we obtain ( ) ,0: 2
11111

2
17 =+− XYTXTZH  

corresponding to the quartic 

( ) [ ( ) ] ( ) .0,0:7 222 ≠=+−++ bXYTTXbYaXZTF  

For n.78, exchanging ( )111 ,, ZYX  with ( ),,, 111 YZX −−  we obtain 

( ) ,0: 3
11

2
11

2
18 =+− XYTTZH  corresponding to 

( ) [ ( ) ] ( ) .0,0:8 3222 ≠=+−++ bXYTTbYaXZTF  

For n.76, exchanging ( )111 ,, ZYX  with ( ),,, 11111 YZXYZ +−−  we have 

( ) ,0: 3
1

2
111

2
19 =+− XYTTZH  which gives to the quartic 
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( ) [ ( ) ] ( ) .0,0:9 3222 ≠=+−++ bXTYTbYaXZTF  

Now we need to examine each surface ( ) ,94, ≤≤ iiF  to obtain its 

suitable parametrization on 2P  and the factor of non-regularity M. On 
each surface 84, ≤≤ iiF  every factor of M defines a plane that 

intersects iF  according to either a conic { ( ) }02 =++ bYaXZT  counted 

twice or the line { }0=+ bYaX  with multiplicity 4. According to 

Proposition 1, all such surfaces are 4-almost-factorial. 

For the last surface ( ),9F  the factor of non-regularity is .65XT  We 

have 

( ) { } ( ) { } ,09,409 21 CCFF +==⋅==⋅ XT r  

where { } { }.0:,0: 22
2

22
1 YTYbZTXYTYbZTX ++==−+== CC   

Now it is 

( ) { ( ) }
( )







=

=++
==−++

0
09

3

2
2

TX

YTbYaXZT
YTbYaXZT∩F  

{ ( ) } { { ( ) } .32000 1
232 C+==−++==++=== rYTbYaXZTXbYaXT  

On ( ),9F  we consider the divisor of 

( ( ) ) ( ( ) ) ( ( ) )
t

ytbyaxzttybyaxzt
t

ytbyaxzt 2222222 2 +++−++
=

−++  

 ( ( ) ) .22 223 tybyaxztyx +++−=  

The cubic surface ( ( ) ) 022: 223 =+++− TYbYaXZTYXS  gives 

( ) .64649 11 CCSF =−+=⋅ rr  

Then we consider ( ) { ( ) }.09 2 =+++ YTbYaXZT∩F  With a similar 

calculation, we find 
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( ) { ( ( ) ) } .60229 2
223 CF ==++++⋅ TYbYaXZTYX  

From Proposition 1, the surface ( )9F  is almost-factorial, and precisely is 

.12=ν  

All these results are summarized in the following tables; index=ν  of 
almost-factoriality, M = factor of non-regularity for the parametrization 
of the surface. 

Almost-factorial quartic with r4=∞F  and T dividing ∆  

Equation of the  
surface 

Parametrization τ  1−τ  µ  

 

( ) :4F  

[ ( ) ]22bYaXTZ ++  

( ) 0=+− YXTXY  

00 ≠≠≠ ba  

( )222: UWUWT +  

( )UWVWUX +22:  

( )UWUVWY +22:  

( ) [ ]242: bWaUVUWWUVZ +−+  

TYW :  

TXU :  

( )2: bYaXZTV ++  

( )2225 YXYXTM +=  

4 

 

( ) :5F  

[ ( ) ]22bYaXTZ ++  

( ) 0=+− TXTXY  

0,0 ≠≠ ba  

( )222: UWWUT −  

( )UWUWX −32:  

( )22: UWWUVY −  

( )UWVUWZ −22:  

[ ( )]222 UWbVaWU −+−  

( )XTTW +:  

TXU :  

( )2: bYaXZTV ++  

( )227 TXXTM +=  
4 

 

( ) :6F  

[ ( ) ]22bYaXTZ ++  

( ) 02 =+− TXYTX  

0,0 ≠≠ ba  

42: UWT  

5: WUX  

( )WUVUWY −222:  

[ ( )]2234: WUVbWaUWVUZ −+−  

2: TW  

TXU :  

( )2: bYaXZTV ++  

47XTM =  

4 
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( ) :7F  

[ ( ) ]22bYaXTZ ++  

( ) 02 =+− XTYTX  

0≠b  

6: WT  

( )WVUWX −24:  

( )WVUVWY −23:  

( ) −− WVUUWZ 23:  

( ) ) ( )222 bVaWWVU +−−  

TXW :  

( )2: bYaXTZU ++  

TYV :  

65XTM =  
4 

 

( ) :8F  

[ ( ) ]22bYaXTZ ++  

( ) 032 =+− XYTT  

0≠b  

6: WT  

UWX 5:  

( )323: UWVWY −  

[ ( )]23225: UWVbUaWVWZ −+−  

2: TW  

TXU :  

( )2: bYaXZTV ++  

11TM =  

4 

 

( ) :9F  

[ ( ) ]22bYaXTZ ++  

( ) 032 =+− XTYT  

0≠b  

 

6: WT  

( )224: VUWX −  

( )223: VUVWY −  

( ) −− 223: VUUWZ  

( ) ( )2222 bVaWVU +−−  

TXW :  

( )2: bYaXZTU ++  

TYV :  

65XTM =  
12 
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